Help with testing the convergence of a series

bolzano
Messages
15
Reaction score
0
Hi i have to show that the series 1+2r+r2+2r3+r4+2r5+... converges for r=\frac{2}{3} and diverges for r=\frac{4}{3} using the nth root test.

The sequence \sqrt[n]{a_{n}}comes a bit complicated so i was wondering if I can remove the 1st term a1=1 and show that 2r+r2+2r3+r4+2r5+... converges, using the test of course.

Am i doing something wrong?

Thanks :)
 
Physics news on Phys.org
Yes you can remove any finite number of terms and not change whether the series converges or not.
 
So (\sqrt[n]{a_{n}})=2r,r,\sqrt[3]{2}r,r,\sqrt[5]{2}r,... which converges to r right? :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
3
Views
1K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
5
Views
2K
Replies
4
Views
1K
Replies
6
Views
2K
Replies
4
Views
2K
Back
Top