- #1
Jamie1995
- 8
- 0
Alright. Physics Internal. I am investigating a physics principle applied into a practical way. Radar Guns and the Doppler Effect. Now the issue is, firstly, that I have encountered two equations to give me the perceived frequency of a wave with a moving observer and stationary source. I am not sure if they are one and the same.
Here they are:
f' = (c+Vr/c) x f
and
f' = f (1 + Vr/c)
Vr = velocity of moving observer
c = velocity of wave
fi = perceived frequency.
My last issue, is that i have examined the physics behind the double doppler effect, this is the principle the radar gun works on. However what I need to know is how the radar gun turns the changed frequency it receives back (from the object it is trying to calculate speed of) into calculating the speed of the object? How would i derive this equation?
Many Thanks
Jamie
Here they are:
f' = (c+Vr/c) x f
and
f' = f (1 + Vr/c)
Vr = velocity of moving observer
c = velocity of wave
fi = perceived frequency.
My last issue, is that i have examined the physics behind the double doppler effect, this is the principle the radar gun works on. However what I need to know is how the radar gun turns the changed frequency it receives back (from the object it is trying to calculate speed of) into calculating the speed of the object? How would i derive this equation?
Many Thanks
Jamie