Below is an extract from a (very) basic summary I put together some time ago regarding fermions and bosons and the Higgs mechanism-
Fermions and bosons
Informally speaking, fermions are 'stiff' and are considered to be particles of matter while bosons are considered to be carriers of the fundamental forces. Bosons have integer spin while fermions have half-integer spin. Bosons can share quantum states while fermions are constrained by the Pauli exclusion principle* and cannot.
- Fermions
As an observer circles a fermion, the wave function changes, hence the term half-integer spin (1/2, 3/2, 5/2). Fermions have an antisymmetric wavefunction and show destructive interference of identical single particle wavefunctions, hence the inability to share quantum states.
Fermions fall into 2 types, quarks (that make up protons, neutrons) and leptons (electrons, muons).
- Bosons
As an observer circles a boson, the wave function doesn't change, hence the term integer spin (0,1,2). Bosons have a symmetric wavefunction and show constructive interference of identical particle wavefunctions, hence the ability to share quantum states.
Bosons fall into 2 categories-
- gauge (or vector) bosons- which are considered elementary particles, carriers of the fundamental forces- photons (electromagnetism), W and Z bosons (weak force) and gluons (strong force).
- composite particle bosons- which include He-4 atoms (Helium with 2 protons, 2 neutrons, 2 electrons), sodium-23 atoms (11 protons, 12 neutrons, 11 electrons) and the nucleus of deuterium (1 proton, 1 neutron). These are made up of an even number of fermions (composites with an even number of fermions become bosons, while composites with an odd number of fermions remain as fermions).
There is also the Higgs boson (yet to be detected), which make up the quanta of the Higgs field. The Higgs field supposedly permeates all of space with an ocean-like ether, which has 'grain' (like that of wood) that interacts with all other particles in 3 ways (2 types for bosons, 1 type for fermions)
- photon bosons travel with the grain and are therefore light and long range.
- W & Z bosons travel 'against' the grain and are heavy and short range.
- fermions travel 'through' the grain (such as electrons and quarks which 'tumble' through the Higgs field, making them appear as matter).
The idea of grain should not be thought of as a direction in 3-dimensional space but as an abstract internal space occupied by vector bosons, quarks and electrons.
* Pauli exclusion principle, no two identical particles in a system, such as electrons or quarks can possesses an identical set of quantum numbers.
Steve