I How Are Definite Integrals Related to the Principle of Least Action?

AI Thread Summary
The discussion focuses on the relationship between definite integrals and the principle of least action, specifically in the context of Goldstein's derivation. A question is raised about the mathematical theorem related to definite integrals and the expression involving variations at the endpoints. It is clarified that the approximation of the integral over a small interval relies on evaluating the function at a point within that interval, which is justified by the smallness of the deltas. The use of Taylor expansion is suggested as a method to understand the reasoning behind the evaluation of the function at the endpoints. Overall, the conversation emphasizes the nuances of applying definite integrals in the context of action principles.
Ben Geoffrey
Messages
16
Reaction score
0
This is with regard to my doubt in the derivation of the principle of least of action in Goldstein

Is there any theorem in math about definite integrals like this ∫a+cb+df(x)dx = f(a)c-f(b)d

The relevant portion of the derivation is given in the image.
 

Attachments

  • Capture.JPG
    Capture.JPG
    36.3 KB · Views: 623
Physics news on Phys.org
That only works when the variations in the endpoints are small. The integral over a small interval is approx. the function value at a point in the interval times the width of the interval.
 
But why is the variation due to ends points L(t2)Δt2 - L(t1)Δt1 rather than L(t2 +Δt2) - L(t1 +Δt1) . Makes more sense if it is L(t2 +Δt2) - L(t1 +Δt1)
 
Ben Geoffrey said:
But why is the variation due to ends points L(t2)Δt2 - L(t1)Δt1 rather than L(t2 +Δt2) - L(t1 +Δt1) . Makes more sense if it is L(t2 +Δt2) - L(t1 +Δt1)

If the deltas are small it makes no difference where you evaluate the function within the small interval.

To see this use a Taylor expansion.
 
thank you
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...
Thread 'Recovering Hamilton's Equations from Poisson brackets'
The issue : Let me start by copying and pasting the relevant passage from the text, thanks to modern day methods of computing. The trouble is, in equation (4.79), it completely ignores the partial derivative of ##q_i## with respect to time, i.e. it puts ##\partial q_i/\partial t=0##. But ##q_i## is a dynamical variable of ##t##, or ##q_i(t)##. In the derivation of Hamilton's equations from the Hamiltonian, viz. ##H = p_i \dot q_i-L##, nowhere did we assume that ##\partial q_i/\partial...
Back
Top