How can [a+,[a+,a]]=0 be proven in the quantum oscillator system?

  • Thread starter Thread starter meanyack
  • Start date Start date
  • Tags Tags
    Proof
meanyack
Messages
19
Reaction score
0

Homework Statement


Actually the question is two long and I'll be done if I can show that
[a+,[a+, a]=0 and similarly
[a,[a+, a]=0
where a+ is the raising and a is the lowering ladder operator in quantum oscillator.

Homework Equations


I tried the formulas
[A,[B,C]]= -[C,[A,B]] -[B,[C,A]] and
a\psin=\sqrt{n}\psin-1
a+\psin=\sqrt{n+1}\psin+1

The Attempt at a Solution

 
Physics news on Phys.org
meanyack said:
I tried the formulas
[A,[B,C]]= -[C,[A,B]] -[B,[C,A]] and

The Jacobi Identity is [A,[B,C]] = [[A,B],C] + [B,[A,C]]
 
why can't I see a button "delete topic" because this is the wrong topic, the original one is the other one
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top