How can a column vector be transformed into a diagonal matrix?

MehranMo
Messages
1
Reaction score
0
I think this is a pretty simple question. I need a transformation that will take a Column vector e.g.: <a,b,c> and turn it into a 3x3 matrix where a is in position 1,1 and b in position 2,2 and c in position 3,3. i.e.: a diagonal matrix.

Any help?
 
Physics news on Phys.org
What kind of transformation? You can define the function by saying that for each i,j we define X_{ij}=\delta_{ij}x_i. (There's no summation over the repeated indices). Do you need to define the function by matrix multiplication alone, or is it OK to use addition too?
 
You could pick a 3 dimensional matrix (a 3x3x3 cube) with 1's on the main diagonal.
 
There is a linear isomorphism \alpha such that for any vector (a, b, c) \alpha will take (a,b,c) to the 3 by 3 matrix, whose main-diagonal entries are a, b, and c, with all other entries being 0.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top