Valayar said:
Arildno : why is this true ?
It is a consequence of the implicit function theorem:
Let G(x,y,z) be a function, and consider the equation:
G(x,y,z)=0 (*)
The implicit function theorem now states that in a vicinity (i.e some open neighbourhood U) of a particular solution of (*) (x_{0},y_{0},z_{0}), we may solve for ONE of the variables in terms of the other two (under fairly mild restrictions), for example:
x=X(y,z), x_{0}=X(y_{0},z_{0}), or for that matter y=Y(x,z), z=Z(x,y), where X, Y, Z are functions.
Now, within U, the following expressions are identities:
G(X(y,z),y,z)=0,G(x,Y(x,z),z)=0,G(x,y,Z(x,y)=0
Because they are identities, we may differentiate them, and gain, for example:
\frac{\partial{G}}{\partial{x}}\frac{\partial{X}}{\partial{y}}+\frac{\partial{G}}{\partial{y}}=0\to\frac{\partial{X}}{\partial{y}}=-\frac{\frac{\partial{G}}{\partial{y}}}{\frac{\partial{G}}{\partial{x}}}
\frac{\partial{G}}{\partial{y}}\frac{\partial{Y}}{\partial{z}}+\frac{\partial{G}}{\partial{z}}=0\to\frac{\partial{Y}}{\partial{z}}=-\frac{\frac{\partial{G}}{\partial{z}}}{\frac{\partial{G}}{\partial{y}}}
\frac{\partial{G}}{\partial{z}}\frac{\partial{Z}}{\partial{x}}+\frac{\partial{G}}{\partial{x}}=0\to\frac{\partial{Z}}{\partial{x}}=-\frac{\frac{\partial{G}}{\partial{x}}}{\frac{\partial{G}}{\partial{z}}}
Thus, we gain:
\frac{\partial{X}}{\partial{y}}\frac{\partial{Y}}{\partial{z}}\frac{\partial{Z}}{\partial{x}}=(-\frac{\frac{\partial{G}}{\partial{y}}}{\frac{\partial{G}}{\partial{x}}})(-\frac{\frac{\partial{G}}{\partial{z}}}{\frac{\partial{G}}{\partial{y}}})(-\frac{\frac{\partial{G}}{\partial{x}}}{\frac{\partial{G}}{\partial{z}}}=-1
as stated.
As an example, let G(x,y,z)=ax+by+cz, so that the equation ax+by+cz=0 describes a plane.
We thereby have:
X(y,z)=-\frac{b}{a}y-\frac{c}{a}z,Y(x,z)=-\frac{a}{b}x-\frac{c}{b}z,Z(x,y)=-\frac{a}{c}x-\frac{b}{c}y
And we have:
\frac{\partial{X}}{\partial{y}}=-\frac{b}{a},\frac{\partial{Y}}{\partial{z}}=-\frac{c}{b},\frac{\partial{Z}}{\partial{x}}=-\frac{a}{c}
and you see that the product of these three quantities equals -1.