Incand
- 334
- 47
Homework Statement
Compute ##\int_0^\infty \frac{\sin x}{x}dx##
using that ##\frac{\sin x}{x} = \frac{b_0}{2} +\sum_1^\infty b_n \cos nx \; \; , \; \; 0 < x < \pi##
with
##b_n = \frac{1}{\pi} \int_{(n-1)\pi}^{(n+1)\pi} \frac{\sin x}{x}dx##.
Homework Equations
Perhaps the following convergence theorem:
If ##f## is ##2\pi##-periodic and piecewise smooth on ##\mathbf R## then
##\lim_{N\to \infty} S_:N^f(\theta ) = \frac{1}{2}\left[ f(\theta -)+ f(\theta +) \right] ##
where ##S_N^f(\theta )## is the partial sum of the Fourier series of ##f(\theta )##.
The Attempt at a Solution
If we choose ##x = 0## we have for the right side
##\frac{1}{2\pi} \int_{-\pi}^\pi \frac{\sin y}{y}dy + \frac{1}{\pi}\sum_1^\infty \int_{(n-1)\pi}^{(n+1)\pi} =\frac{1}{\pi} \int_0^\pi \frac{\sin y}{y}dy + \int_0^\infty \frac{\sin x}{x}dx + \int_\pi^\infty \frac{\sin y}{y}dy = \frac{2}{\pi}\int_0^\infty \frac{\sin y}{y}dy##
The left side should be ##\frac{1}{2}## since ##\lim_{x\to \pi} \frac{\sin x}{x} = 0## and ##\lim_{x\to 0} \frac{\sin x}{x} = 1##. we get
##\int_0^\infty \frac{\sin x}{x}dx = \frac{\pi}{4}##. However the integral should be ##\frac{\pi}{2}## so i made a mistake somewhere.