How can I Bel-decompose the Riemann tensor over SO(3,3)?

  • Thread starter Thread starter deSitter
  • Start date Start date
  • Tags Tags
    Decomposition
deSitter
Messages
10
Reaction score
0
Hello,

I need to Bel-decompose the Riemann tensor built over SO(3,3). Does anyone have a decent reference? Funny how this topic is elusive. Is this in Wald?

Thanks in advance.

-drl
 
Physics news on Phys.org
Not sure what you want, but I'll take a stab at it. You have Rabcd, and you want to split it into parts according to whether the indices lie in the first or second 3-spaces. Bel calls the parts 'electric' and 'magnetic', and SO(3,3) is like Minkowski space except that time is three dimensional. Whatever :-)

Consider first one antisymmetric pair of indices by itself, ab. They can lie in either 11, 12 or 22. That's three cases. Likewise for the second pair, cd. So you have a 3 x 3 matrix of cases, except that Rabcd is symmetric on the two pairs, so the 3 x 3 matrix is symmetrical and there are really only 6 cases: 1111, 1112, 1122, 1212. 1222 and 2222. The decomposition will therefore have six parts.

Is this anywhere near what you want?
 
Bill_K said:
Not sure what you want, but I'll take a stab at it. You have Rabcd, and you want to split it into parts according to whether the indices lie in the first or second 3-spaces. Bel calls the parts 'electric' and 'magnetic', and SO(3,3) is like Minkowski space except that time is three dimensional. Whatever :-)

Consider first one antisymmetric pair of indices by itself, ab. They can lie in either 11, 12 or 22. That's three cases. Likewise for the second pair, cd. So you have a 3 x 3 matrix of cases, except that Rabcd is symmetric on the two pairs, so the 3 x 3 matrix is symmetrical and there are really only 6 cases: 1111, 1112, 1122, 1212. 1222 and 2222. The decomposition will therefore have six parts.

Is this anywhere near what you want?

Not really - there is a definite procedure here for carving up the Riemann tensor, sort of like the Ricci decomposition, but I'll be damned if I can remember the details. You need a time-like congruence, which should still exist for SO(3,3) because there is still a light cone. Well I can't remember where I saw this, and need the details. There are actually 4 pieces in general, only 3 survive in 4-d, where they represent tidal distortion and tendency to rotate in the congruence, and the sectional curvatures of the space-like surface orthogonal to the time-like congruence.

edit: Ok I found a paper by Deser talking about it - great! The Bel-Robinson tensor in 4-d is basically sort of like the Maxwell energy tensor in reference to Fmn, that is, you can write Maxwell as

Tmn = Fma Fan + F*ma F*an

and the Bel-Robinson tensor is

Bmnab = Rkmjn Rkajb + R*kmjn R*kajb

where R*mnab = 1/2 epsilon_mnrs Rrsab

I'm speculating that if you think of Rmnab as a thing have two 2-form indices ("surface tensor of 2nd rank" as Pauli called it), then the analogy is exact.

paper by Deser is here

http://arxiv.org/abs/gr-qc/9901007

-drl
 
Last edited:
The timelike congruence Xa used in 4 dimensions is really a projection operator. You need to use two projectors, one projecting on the space dimensions, the other on the time dimension(s). In 4-d, since time is one-dimensional, the projectors can be written in terms of a timelike congruence Xa, namely Pab = XaXb and Qab = nab - XaXb. The Riemann tensor is decomposed by applying one of these projectors to each of the four indices. Taking into account the symmetry of the indices, you wind up with a decomposition into three independent parts.

What I'm saying is that you do likewise in SO(3,3). You still have Pab and Qab, but there's no Xa any longer because 'time' is 3-dimensional. (I suppose if you really insisted on it you could use three congruences and define Pab = XaXb + YaYb + ZaZb.) Project each index onto either the timelike subspace or the spacelike subspace. You'll wind up with six independent parts. For example the first one which I wrote as 1111 earlier would be RabcdPaiPbjPckPdl. The next one would be RabcdPaiPbjPckQdl, and so on.
 
Bill_K said:
The timelike congruence Xa used in 4 dimensions is really a projection operator. You need to use two projectors, one projecting on the space dimensions, the other on the time dimension(s). In 4-d, since time is one-dimensional, the projectors can be written in terms of a timelike congruence Xa, namely Pab = XaXb and Qab = nab - XaXb. The Riemann tensor is decomposed by applying one of these projectors to each of the four indices. Taking into account the symmetry of the indices, you wind up with a decomposition into three independent parts.

What I'm saying is that you do likewise in SO(3,3). You still have Pab and Qab, but there's no Xa any longer because 'time' is 3-dimensional. (I suppose if you really insisted on it you could use three congruences and define Pab = XaXb + YaYb + ZaZb.) Project each index onto either the timelike subspace or the spacelike subspace. You'll wind up with six independent parts. For example the first one which I wrote as 1111 earlier would be RabcdPaiPbjPckPdl. The next one would be RabcdPaiPbjPckQdl, and so on.

Good points, thanks for the grist :)

-drl
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Abstract The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses ## m_1=33.6_{-0.8}^{+1.2} M_{⊙} ## and ## m_2=32.2_{-1. 3}^{+0.8} M_{⊙}##, and small spins ##\chi_{1,2}\leq 0.26 ## (90% credibility) and negligible eccentricity ##e⁢\leq 0.03.## Postmerger data excluding the peak region are consistent with the dominant quadrupolar...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top