How can I differentiate modulus?

ojsimon
Messages
56
Reaction score
0
Ok so i was wondering if what i am doing is correct, But it gets the wrong minimum point?
So my function is y=|x+4|

1) y^2=x+4
2)2y(dy/dx)=1
3)dy/dx = 1/2y
4)dy/dx = 1/2|x+4|

I set that 0 and get
0=1/(2(|x+4|))

Am i write in thinking this cannot be solved? or missing something?

Thanks
 
Mathematics news on Phys.org
Yep that's right. It's the same as asking what number x can be used to make 1/x=0? None of course. And at x=-4 the derivative is undefined.
 
It goes wrong from the start, y^2 \neq x+4.
 
  • Like
Likes milkism
Oh right, I guess I brushed over it too fast.

When that mistake is fixed, you'll still find the the derivative cannot equal zero anywhere and it's still undefined at x=-4 with the form 0/0
 
Oh yeah, thanks,
 
Another approach is to get rid of the absolute values by writing the function as
y = x + 4, x >= -4
y = -(x + 4), x < -4

Then y' = 1 for x > -4 and y' = -1 for x < - 4. y' does not exist at x = -4.

Any extreme points of a function occur at places where y' = 0, or y' is undefined, or at finite endpoints of the domain in cases where a function is defined only on an interval [a, b].
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top