How Can I Express This Alternating Pattern Series as a Single Sum?

  • Thread starter Thread starter Nick89
  • Start date Start date
  • Tags Tags
    Series Stupid
Nick89
Messages
553
Reaction score
0

Homework Statement



I need a way to write the following series in a sum:
\frac{1}{2} + \frac{1}{4} + \frac{1}{32} + \frac{1}{64} + \frac{1}{1024} + \frac{1}{2048} + ...

If you look closely you can see a 2^n pattern in there:
\frac{1}{2} + \frac{1}{4} + \frac{0}{8} + \frac{0}{16} + \frac{1}{32} + \frac{1}{64} + \frac{0}{128} + \frac{0}{256} + \frac{1}{512} + \frac{1}{1024} + ...

The denominator obviously follows 2^n, but the numerator goes 110011001100...
I can't seem to find a function that will allow me to put this in a single sum:
\sum_{n=1}^{\infty} ...

(The sum should converge to 0.8, right?)

The Attempt at a Solution


I tried using the mod operator to determine if n was even or odd, something like this:
\sum_{n=1}^{\infty} \frac{n \mod 2}{2^n} + \frac{n \mod 2}{2^{n+1}}
This doesn't work, because the terms that are discarded when n is even are not discarded the next 'run' when (n+1) is even... Dunno how to explain this properly, but if you calculate it manually it does this:
\frac{1}{2} + \frac{1}{4} + \frac{0}{4} + \frac{0}{8} + \frac{1}{8} + \frac{1}{16} + ...
So if you discard the 0/ ... terms you are just left with the usual 2^(-n) sum...

I have a feeling I'm close, but I can't figure it out :S
 
Last edited:
Physics news on Phys.org
If the missing bits were not missing it would add up to 1.

Now you can put each missing bit into a relation with a bit that is there.

They are a certain fraction of terms that are there. So their sum is that proportion of 1 IYSWIM.

Do a diagram and this will look plausible.
 
I can't seem to understand what you mean exactly...

By missing bits you mean the 0/x parts?
If so, then half of the terms as missing, so to your logic that would mean the sum would converge to 0.5...? (Whatr does IYSWIM mean?)

But I think it should converge to 0.8 (I said 8 before but that was a mistake, I edited it now).
 
If it's the pattern you suggest, (1/2+1/4)*(1/16)=(1/32+1/64). (1/32+1/64)*(1/16)=(1/512+1/1024). It's a geometric series with a common ratio of 1/16. But this doesn't quite fit with the series you quote in the first line (the next term after 1/64 is 1/1024, not 1/512). Is that a typo?
 
Nick89 said:
I can't seem to understand what you mean exactly...

By missing bits you mean the 0/x parts?
If so, then half of the terms as missing, so to your logic that would mean the sum would converge to 0.5...? (Whatr does IYSWIM mean?)

But I think it should converge to 0.8 (I said 8 before but that was a mistake, I edited it now).

IYSWIM means 'if you see what I mean'.
Just compare each pair of 'absent' terms with the 'present' pair preceding it.
 
Dick said:
If it's the pattern you suggest, (1/2+1/4)*(1/16)=(1/32+1/64). (1/32+1/64)*(1/16)=(1/512+1/1024). It's a geometric series with a common ratio of 1/16. But this doesn't quite fit with the series you quote in the first line (the next term after 1/64 is 1/1024, not 1/512). Is that a typo?

It was indeed a typo. The correct form is right underneath, where 1/512 is present.

Alright, that makes a bit more sense. I still fail to see how I can now create a single sum for this series though... If I have a bit more time (maybe later tonight) I'll try to figure it out :)

Thanks so far.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top