How can I find the velocity of the combined cars after collision?

AI Thread Summary
To find the velocity of two combined cars after a collision, the first car, weighing 1500 kg, rolls down a 30-degree slope, reaching a speed of 17.15 m/s at the bottom. Assuming the second car has the same mass, conservation of momentum gives a combined velocity of 8.575 m/s immediately after the collision. The energy lost during the collision is calculated by comparing the initial kinetic energy of the first car with the final kinetic energy of both cars together. The energy lost is determined to be 110,295 J. The discussion emphasizes the importance of using conservation principles and assumptions about mass in collision problems.
lola2000
Messages
12
Reaction score
0

Homework Statement


A car of mass 1500kg is parked on a 30degree slope before rolling down a distance of 30m onto a flat section where it collides with a stationary car. The cars stick together and scrape along the road for 20m until they come to a rest. Calculate the velocity of the two combined cars immediately after the collision. Calculate the energy lost in the collision and the average coefficient of dynamic friction between the road and the two vehicles

Homework Equations

The Attempt at a Solution



Pythagoras gives that the first car will drop a vertical height of 15m.
So mgh=0.5mv^2 energy conservation for the first car when it reaches the bottom of the slope. So it's velocity at the bottom of the slope will be 17.15m/s

Then to find the velocity of the combined cars immediately after the collision I need to use conservation of momentum BUT I don't have the mass of the second car??
m1v1 +m2v2 = (m1+m2) v3
1500 * 17.15 + m2 *0 = (1500 +m2) * v3

How can I find the resultant velocity??
 
Physics news on Phys.org
I guess they expect you to assume that the mass of the 2nd car is the same as that of the first car.

Chet
 
You will need to think carefully (even, 'carfully') in the second part.
 
So if I assume that the second car is the same mass I would get a final velocity of the combined cars after the collision to be 8.575m/s

For the energy lost during the collision would I just need to compare the initial kinetic energy of car 1 before impact with the final kinetic energy of the combined cars after collision?

Ek lost = 0.5 (m1+m2) v^2 - 0.5 *1500 *17.15^2 = 110 295J
 
haruspex said:
You will need to think carefully (even, 'carfully') in the second part.
Excellent. You're right. You don't have to assume
lola2000 said:
So if I assume that the second car is the same mass I would get a final velocity of the combined cars after the collision to be 8.575m/s

For the energy lost during the collision would I just need to compare the initial kinetic energy of car 1 before impact with the final kinetic energy of the combined cars after collision?

Ek lost = 0.5 (m1+m2) v^2 - 0.5 *1500 *17.15^2 = 110 295J
yes
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top