How can I mix gases in a chamber measuring only pressure and temperature

Click For Summary
SUMMARY

This discussion focuses on creating a controlled gas mixture of CO2 and compressed air in a chamber, utilizing electrovalves to manage pressure. The goal is to achieve a specific CO2 concentration at a total pressure of 2 Bar, starting from an initial pressure of 1 Bar with compressed air. The challenge lies in accounting for temperature variations and the unknown volume of the chamber, which affects the calculations of gas absorption. Participants emphasize the importance of the ideal gas law in determining the relationship between pressure, volume, and temperature in this context.

PREREQUISITES
  • Understanding of the ideal gas law
  • Familiarity with pressure measurement in gas systems
  • Knowledge of electrovalve operation and control
  • Basic principles of thermodynamics related to gas mixtures
NEXT STEPS
  • Research the ideal gas law and its applications in gas mixtures
  • Learn about pressure control systems using electrovalves
  • Explore methods for measuring gas absorption in controlled environments
  • Investigate the effects of temperature on gas behavior in mixtures
USEFUL FOR

Electronics engineers, chemists, and anyone involved in gas mixture control and monitoring, particularly in applications requiring precise CO2 concentration management.

electr0dave
Messages
3
Reaction score
0
Hello all!

Basically I intend to create an environment inside a chamber with variations of CO2 percentages, using electrovalves.
The mixing gas is always compressed air + CO2.

For example: create a 50% CO2 concentration with a total pressure of 2 Bar.
The chamber is closed, and compressed air is introduced up to 1 bar. Then CO2 is introduced until Ptotal reaches 2 bar.

The problem is that with this gas mixture, the chamber will be heated until 50°C, varying the pressures inside.

Can someone help me with some calculations? I am an electronics engineer and so chemistry and thermodynamics aren't my strong ones.

PS: The chamber will have an unknown volume, given that inside it will be placed parts also of variable volume.
 
Science news on Phys.org
What is the initial state of the pure gases and what is the final state of the mixture?
 
  • Like
Likes   Reactions: electr0dave
Hello. Thanks for the reply.

Initially the chamber has air at ambient pressure.
I fill the chamber with compressed air (coming from a compressor) to 2 bar and then close the solenoid valve and open an electrovalve that only escapes that air (until pressure "0"). A kind of renewal cycle.
Then I open the valve of the compressed air again until P1, close it, and open the valve of the CO2 cylinder until the pressure P2.

Inside the chamber will be an object that absorbs CO2. The aim is to control and monitor the pressure inside the chamber.

By measuring the total pressure variation I must get a good approximation (knowing that the object only absorbs CO2) from how much CO2 was absorbed.
 
electr0dave said:
Hello. Thanks for the reply.

Initially the chamber has air at ambient pressure.
I fill the chamber with compressed air (coming from a compressor) to 2 bar and then close the solenoid valve and open an electrovalve that only escapes that air (until pressure "0"). A kind of renewal cycle.
Then I open the valve of the compressed air again until P1, close it, and open the valve of the CO2 cylinder until the pressure P2.

Inside the chamber will be an object that absorbs CO2. The aim is to control and monitor the pressure inside the chamber.

By measuring the total pressure variation I must get a good approximation (knowing that the object only absorbs CO2) from how much CO2 was absorbed.
If you don't know the volume available for gas in the system, you won't be able to get the absolute amount of CO2 absorbed...only the fraction of the CO2 absorbed. Also, P2 must of course be higher than P1.

Are you familiar with the ideal gas law?
 
Chestermiller said:
If you don't know the volume available for gas in the system, you won't be able to get the absolute amount of CO2 absorbed...only the fraction of the CO2 absorbed. Also, P2 must of course be higher than P1.

Are you familiar with the ideal gas law?

Hello.
I need to distinguish which object absorbs more CO2. So a comparison of fraction is sufficient.

As for the pressure P2, I wanted to refer to the pressure above P1.
Therefore, in the example, P1 = 1bar and P2 = Ptotal = 2bar (or 1 bar above P1).

I am familiar with the ideal gas law.
Can I take the volume out of the equation? It will be the same in both gases ... just like the temperature.
But the temperature will affect the gases in different ways, right? It will depend only on the ratio of the number of moles ...

I can understand this in my head, but I can not find a mathematical basis for the problem ...
 
electr0dave said:
Hello.
I need to distinguish which object absorbs more CO2. So a comparison of fraction is sufficient.

As for the pressure P2, I wanted to refer to the pressure above P1.
Therefore, in the example, P1 = 1bar and P2 = Ptotal = 2bar (or 1 bar above P1).

I am familiar with the ideal gas law.
Can I take the volume out of the equation? It will be the same in both gases ... just like the temperature.
But the temperature will affect the gases in different ways, right? It will depend only on the ratio of the number of moles ...

I can understand this in my head, but I can not find a mathematical basis for the problem ...
Please give it a shot. Let V be the volume of the chamber and T be the temperature, and do everything algebraically. Let's see what you come up with. If you have trouble, I'll help.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
9K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
7
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
16
Views
4K