Theofilius
- 86
- 0
Homework Statement
Hello!

a)Prove that (a+bi)^n and (a-bi)^n, n \in \mathbb{N} are conjugate complex numbers;
b)Prove that quotient of any two numbers from the set of \sqrt[n]{1} is again number from the set of \sqrt[n]{1}
c)Prove that reciproca value of any number from the set of \sqrt[n]{1}, is again number from the set \sqrt[n]{1}
Homework Equations
z=r(cos\alpha+isin\alpha)
\bar{z}=r(cos\alpha-isin\alpha)
w_k=\sqrt[n]{r}(cos\frac{\alpha + 2k\pi}{n}+isin{\alpha + 2k\pi}{n}) ; k=0,1,2,...,n-1
The Attempt at a Solution
a) (a+bi)=r(cos\alpha+isin\alpha)
(a+bi)^n=r^n(cosn\alpha+isinn\alpha)
(a-bi)=r(cos\alpha-sin\alpha)
(a-bi)^n=r^n(cosn\alpha-sinn\alpha)
Is this enough to prove that they are conjugate complex numbers?
b)E_k=\sqrt[n]{1}=cos\frac{2k\pi}{n}+isin{2k\pi}{n} , k=0,1,2,3,...,n-1
Should I make like this?
E_n_-_1=\sqrt[n]{1}=cos\frac{2(n-1)\pi}{n}+isin\frac{2(n-1)\pi}{n}
What should I do next?
c)If I know how to prove b) I will prove c)
In this case just (\sqrt[n]{1})^-^1=\sqrt[n]{1}, right?