MHB How can I solve more complex exponential equations?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Exponential
AI Thread Summary
Complex exponential equations, such as 5^(x - 2) + 8^(x) = 200, often cannot be solved algebraically. Instead, numeric root-finding techniques like the Newton-Raphson method are recommended for finding approximate solutions. The approximate solution for the given equation is x ≈ 2.5421632382360203811. This approach helps in dealing with more intricate exponential equations effectively. Understanding these methods can alleviate frustration when facing challenging problems.
mathdad
Messages
1,280
Reaction score
0
I can solve equations like 4^(x) = 16 or
5^(x + 1) = 25. However, there are exponential equations that a bit more involved. The following equation has two exponentials on the left side.

Solve for x.

5^(x - 2) + 8^(x) = 200
 
Mathematics news on Phys.org
RTCNTC said:
I can solve equations like 4^(x) = 16 or
5^(x + 1) = 25. However, there are exponential equations that a bit more involved. The following equation has two exponentials on the left side.

Solve for x.

5^(x - 2) + 8^(x) = 200

I don't believe you can solve that algebraically...I would use a numeric root-finding technique, such as the Newton-Raphson method, to approximate the solution to the desired number of decimal places:

$$x\approx2.5421632382360203811$$
 
MarkFL said:
I don't believe you can solve that algebraically...I would use a numeric root-finding technique, such as the Newton-Raphson method, to approximate the solution to the desired number of decimal places:

$$x\approx2.5421632382360203811$$

Ok. Good to know. I don't feel so bad now.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top