How can I solve this complex differential equation?

  • Thread starter Thread starter zomfgbbq
  • Start date Start date
  • Tags Tags
    Complex
zomfgbbq
Messages
2
Reaction score
0

Homework Statement


\frac{dy}{dx}=e^{x+iy}


Homework Equations



e^{x+iy}=e^{x}(\cos y+i\sin y)

The Attempt at a Solution


\frac{dy}{dx}=e^{x}(\cos y+i\sin y)
\frac{dy}{\cos y+i\sin y}=e^{x}dx

I tried multiplying by \frac{\cos y-i\sin y}{\cos y-i\sin y} and \frac{\cos y+i\sin y}{\cos y+i\sin y} and tons of other bad math to try and eliminate i or get it so that I can put it with the constant. None of that led to any meaningful results. Complex analysis has never been my strong suit especially since I've never really been taught it.
 
Physics news on Phys.org
Suggestion:

\frac{1}{\cos y + i \sin y}\cdot\frac{\cos y - i \sin y}{\cos y - i \sin y}=\frac{\cos y - i \sin y}{\cos^2 y + \sin^2 y}=\cos y - i \sin y

I assume the i can be taken out of the integral (after separating cos y and i sin y) since it is a constant?
 
It would however be much simpler to note that,

\int\frac{dy}{e^{iy}} = \int e^x\;dx

\int e^{-iy}\;dy = \int e^x\;dx

\int \left\{\cos\left(-y\right) + i\sin\left(-y\right)\right\}\;dy = \int e^x\;dx

\int \left\{\cos\left(y\right) - i\sin\left(y\right)\right\}\;dy = \int e^x\;dx

which is of course the same result, but is a more straightforward approach.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top