How can particles undergo EM interactions *and* have definite strong isospin?

depeche1
Messages
1
Reaction score
0
I am deeply confused about the following and I'd really appreciate it if anyone could help! Consider a charged hadron such as a proton. Amongst the state-independent properties that define a proton are strong isospin Iz=1/2 and charge Q=e. Now, the total Hamiltonian for a proton is

Hs +Hem +Hw,

where these denote the strong, electromagnetic and weak interaction Hamiltonians respectively. And in the rest frame of the proton p, which has mass m, we have

Hs +Hem +Hw|p> = m|p>

where |p> is the wavefunction of the proton. Since Iz=1/2 and charge Q=e are two of the state-independent properties that define the proton, presumably this means that

Hs +Hem +Hw|Iz=1/2, Q=e> = m|Iz=1/2, Q=e>

- otherwise it wouldn't be the eigenvalue equation for a proton wavefunction. But the electromagnetic Hamiltonian Hem does not commute with Iz; so how can the proton be evolving in accordance with the above Hamiltonian *and* have definite isospin?!

Any help really appreciated!
 
Physics news on Phys.org
The charge operator Q = Iz + Y/2, where Y is the hypercharge. For protons and neutrons, Y = 1. The electromagnetic Hamiltonian does not commute with Iz by itself, or Y by itself, but it does commute with the combination Q.

It also commutes with I. Protons and neutrons form an isospin doublet with I = 1/2.
 
Bill_K said:
The charge operator Q = Iz + Y/2, where Y is the hypercharge. For protons and neutrons, Y = 1. The electromagnetic Hamiltonian does not commute with Iz by itself, or Y by itself, but it does commute with the combination Q.

It also commutes with I. Protons and neutrons form an isospin doublet with I = 1/2.

That's certainly true. But as far as I can see, these observations don't resolve the original problem - namely that of why it is that, when listing the fundamental intrinsic properties of the proton, we include that it is an Iz=1/2 particle (in addition to being a *total* isospin I=1/2 particle) given that when it's evolving in accordance with its full (strong plus electroweak) Hamiltonian, the third component of isospin isn't even defined in it's own rest frame? Why *do* we regard it as an intrinsic property of the proton that it is an Iz=1/2 particle if that property isn't even well-defined along with its total energy? It seems so counter-intuitive (to me!)
 
It also commutes with I

Sorry this is *not* true! Must eat my words. The strong Hamiltonian commutes with isospin, while the electromagnetic part does not.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top