How can the chain rule be used to simplify the energy transformation equation?

coverband
Messages
170
Reaction score
1
How does \frac{d\dot{x}}{dx}\frac{dx}{dt} =\frac{d}{dx}(\frac{1}{2}{\dot{x}}^2)

Thanks
 
Physics news on Phys.org
Apply the chain rule, that is (I'll change variables so as not to do the problem for you exactly):

\frac{d}{dv}u^2=2u\frac{du}{dv}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top