How can the Fundamental Theorem of Calculus help solve improper integrals?

  • Thread starter Thread starter Artusartos
  • Start date Start date
  • Tags Tags
    Analysis
Artusartos
Messages
236
Reaction score
0
Show that \int_0^1 x^{-p} dx = \frac{1}{1-p} if 0<p<1 and \int_0^1 x^{-p} dx = +\inf if p>1. Can anybody please give me a hint?

Thanks in advance
 
Physics news on Phys.org
Hints: Fundamental Theorem of Calculus, Improper integrals
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top