Damidami
- 93
- 0
I have to prove that
\cos(x) = 1 - \frac{x^2}{2} + O(x^4) (x \to 0)
My ugly attempt:
\lim_{x \to 0} \frac{\cos(x) - 1 + \frac{x^2}{2}}{x^4}
\lim_{x \to 0} \frac{\cos(x) - 1}{x^4} + \frac{1}{2x^2}
\lim_{x \to 0} \frac{\sin(x)}{4x^3} + \frac{1}{2x^2}
\lim_{x \to 0} \frac{1}{4x^2} + \frac{1}{2x^2}
\lim_{x \to 0} \frac{1}{4x^2} + \frac{2}{4x^2} = \frac{3}{4x^2} = \infty (It should be a finite number)
Something does not work here, any help? Thanks!
\cos(x) = 1 - \frac{x^2}{2} + O(x^4) (x \to 0)
My ugly attempt:
\lim_{x \to 0} \frac{\cos(x) - 1 + \frac{x^2}{2}}{x^4}
\lim_{x \to 0} \frac{\cos(x) - 1}{x^4} + \frac{1}{2x^2}
\lim_{x \to 0} \frac{\sin(x)}{4x^3} + \frac{1}{2x^2}
\lim_{x \to 0} \frac{1}{4x^2} + \frac{1}{2x^2}
\lim_{x \to 0} \frac{1}{4x^2} + \frac{2}{4x^2} = \frac{3}{4x^2} = \infty (It should be a finite number)
Something does not work here, any help? Thanks!