Well, I'm still working on this. It's been quite some time since I asked my initial question. When I first posted this question, I barely understood how perspective worked. Since then, I've struggled very hard for nearly 2 years (just about) to visually understand how perspective worked and how it could be roughly applied with complex arrangements of parallelepipedic shapes, resulting in inaccurate, but sufficient representations of said structures. However, I'd like to see what it takes to place a cube without any faces or outlines parallel to the projection plane in perspective using trigonometry.
I've recreated the initial graphic I supplied with the original post. It is located here (old link for it is dead).
http://mywebpages.comcast.net/unitedtiles/perspective03.jpg
The goal of the original post was to understand how to properly represent something simple like a cube with 2 faces parallel to the projection plane (0 degree cube or '1 point cube), then 'link' that representation to a field of view size. By this, I mean that cameras have constant angles of vision emitting from them. If then, I was able to use simple math to represent this '0 degree cube' on the projection plane, I'd be able to simultaneously understand how that camera would 'experience' the representation relative to its inherent angle of vision. I've demonstrated this in this next illustration.
http://mywebpages.comcast.net/unitedtiles/perspective01.jpg
On the right of the illustration, I've shown how the 'camera' would interpret the '0 degree cube' if it had 2 different angles of vision emitting from its viewpoint. The one where the square of the cube appears smaller is due to a larger angle of view emitting from the viewpoint. This would be acquired through the usage of the equation supplied to me 2 years ago.
NOW then, I've strengthened up a bit. I'm ready to start playing with cubes with faces at complex arrangements to the projection plane. However, I have no idea how I should go about this. I've created a rough orthogonal perspective illustration of the 'perspective happening' where we have a cube with all its planes at complex angles to the projection plane. I know we will need to know the angle of one set of planes of the cube relative to the projection plane to do anything. I also know we will need to know where the centerpoint of the cube or any 'corner point' of the cube is located relative to an established 3dimensional numerical grid system in space. Beyond this, I'm completely lost. I do know one thing though -- it would be somewhat tough to complete this operation. However, I'd like to know how it would be done.
Here's the illustration demonstrating the new problem:
http://mywebpages.comcast.net/unitedtiles/perspective02.jpg