since i have yet to figure out how to draw on physics forums i will use texts and hope it doesn't get too confusing. (you may find it helpful to draw on a piece of paper)
let us establish a 3d cartesian plane, with x-axis points to the right., y-axis points up, and the z axis points out of the page. let us suppose the magnetic field B, points along the z axis, out of the page, and the wires solely lie in the xy plane. suppose a wire goes from (0,0,0) to (1,1,0) and carries current I. since this is a straight wire F=BlIsin(θ) applies. find the force on the wire along with its direction, name this F1 (bold denoting it a vector)
now consider a wire that goes from O(0,0,0) to A(1,0,0) then to B(1,1,0) which also carries current I. use F=IBLsin θ on the two segments OA and OB separately (since each segment is straight the formula applies) to find the net force F2, yup another vector. you should be able to show F1=F2 in both magnitude and direction.
now comes the fruit of the argument, you should be able to reason that any small straight wire could be separate into x and y components with the net force on the segment unchanged.
also notice that once you divide the wires into components the order at which the compoenents appear doesn't matter since the field is uniform.
apply the above argument to the 3 wires in the problem by dividing each wire into infinitisimal (so essentially straight) segments, and separate each into x,y compoenents, by rearranging you should be able to see clearly which components cancel and which dont. (you don't have to do very sophisticated math, just an argument)