I don't know, how Griffiths comes to his solution, but I'd use the following simpler idea. The equation
\vec{F}=\vec{\nabla} \times \vec{A}
has a solution \vec{A} for a given \vec{F}, if and only if
\vec{\nabla} \cdot \vec{F}=0,
which is fulfilled for your example.
This solution is not unique, but only determined up to a potential field, i.e., a gradient of a scalar field. Thus, we can impose one constraint. Here, I use the "axial gauge condition"
A_z=0.
Then we have
\vec{\nabla} \times \vec{A}=\begin{pmatrix}<br />
-\partial_z A_y \\<br />
\partial_z A_x \\<br />
\partial_y A_x - \partial_x A_y<br />
\end{pmatrix} \stackrel{!}{=} \begin{pmatrix} <br />
yz \\<br />
xz \\<br />
xy<br />
\end{pmatrix}<br />
The first line leads to
A_y=-\int_0^z \mathrm{d} z F_x + A_y'(x,y) = -\frac{1}{2} y z^2 + A_y'(x,y)
and the second line
A_x=\int_0^z \mathrm{d} z F_y+A_x'(x,y)=\frac{1}{2}x z^2 + A_x'(x,y).
The last line now reads
F_z=-\int_0^z \mathrm{d} z (\partial_x F_x + \partial_y F_y)+\partial_x A_y'-\partial_y A_x'.
Because of \vec{\nabla} \cdot \vec{F}=0, we have
F_z=\int_0^z \mathrm{d} z \partial_z F_z+\partial_x A_y'-\partial_y A_x'<br />
=F_z(x,y,z)-F_z(x,y,0) + \partial_x A_y'(x,y) - \partial_y A_x'(x,y)<br />
.
Now we can again arbitrarily set A_x'(x,y)=0. To fulfill the above equation, we just have to set
\partial_x A_y'=F_z(x,y,0)=xy \; \Rightarrow A_y'=\frac{1}{2} x^2 y+A_y''(y).
Of course, A_y''=0 is good enough since it doesn't contribute to the curl at all. Plugging everything together leads to
\vec{A}=\begin{pmatrix}<br />
x z^2/2 \\<br />
(x^2 y-y z^2)/2 \\<br />
0<br />
\end{pmatrix}.<br />
Finally, it's good to check, whether everything is fine. Thus we take the curl
\vec{\nabla} \times \vec{A}=\begin{pmatrix}<br />
-\partial_z A_y \\<br />
\partial_z A_x \\<br />
\partial_x A_y - \partial_y A_x<br />
\end{pmatrix}=\begin{pmatrix}<br />
yz \\ xz \\ xy<br />
\end{pmatrix}=\vec{F}.
Thus, we have found a vector potential for \vec{F}.