MHB How Can You Effectively Evaluate a Challenging Definite Integral?

Click For Summary
To evaluate the integral $$\int_2^4 \frac{\sqrt{\ln (9-x)}\,dx}{\sqrt{\ln (9-x)}+\sqrt{\ln (x+3)}},$$ a substitution or transformation may simplify the expression. The discussion highlights the importance of recognizing patterns in logarithmic functions and their properties. Participants share various techniques, including substitution and numerical methods, to tackle the integral effectively. The conversation emphasizes the need for careful manipulation of the integrand to facilitate evaluation. Overall, the thread showcases collaborative problem-solving strategies for challenging definite integrals.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $$\int_2^4 \frac{\sqrt{\ln (9-x)}\,dx}{\sqrt{\ln (9-x)}+\sqrt{\ln (x+3)}}$$
 
Mathematics news on Phys.org
My solution:

We are given to evaluate:

$$I=\int_2^4 \frac{\sqrt{\ln (9-x)}\,dx}{\sqrt{\ln (9-x)}+\sqrt{\ln (x+3)}}$$

Let:

$$u=x-3\,\therefore\,du=dx$$

and we have:

$$I=\int_{-1}^{1}\frac{\sqrt{\ln(6-u)}}{\sqrt{\ln(6-u)}+\sqrt{\ln(6+u)}}\,du$$

Using the property of definite integrals:

$$\int_{-a}^a f(x)\,dx=\int_0^a \left[f(x)+f(-x) \right]\,dx$$

we may write:

$$I=\int_{0}^{1}\frac{\sqrt{\ln(6-u)}}{\sqrt{\ln(6-u)}+\sqrt{\ln(6+u)}}+\frac{\sqrt{\ln(6+u)}}{\sqrt{\ln(6+u)}+\sqrt{\ln(6-u)}}\,du$$

$$I=\int_{0}^{1}\frac{\sqrt{\ln(6-u)}+\sqrt{\ln(6+u)}}{\sqrt{\ln(6-u)}+\sqrt{\ln(6+u)}}\,du$$

$$I=\int_{0}^{1}\,du=_0^1=1-0=1$$
 
MarkFL said:
My solution:

We are given to evaluate:

$$I=\int_2^4 \frac{\sqrt{\ln (9-x)}\,dx}{\sqrt{\ln (9-x)}+\sqrt{\ln (x+3)}}$$

Let:

$$u=x-3\,\therefore\,du=dx$$

and we have:

$$I=\int_{-1}^{1}\frac{\sqrt{\ln(6-u)}}{\sqrt{\ln(6-u)}+\sqrt{\ln(6+u)}}\,du$$

Using the property of definite integrals:

$$\int_{-a}^a f(x)\,dx=\int_0^a \left[f(x)+f(-x) \right]\,dx$$

we may write:

$$I=\int_{0}^{1}\frac{\sqrt{\ln(6-u)}}{\sqrt{\ln(6-u)}+\sqrt{\ln(6+u)}}+\frac{\sqrt{\ln(6+u)}}{\sqrt{\ln(6+u)}+\sqrt{\ln(6-u)}}\,du$$

$$I=\int_{0}^{1}\frac{\sqrt{\ln(6-u)}+\sqrt{\ln(6+u)}}{\sqrt{\ln(6-u)}+\sqrt{\ln(6+u)}}\,du$$

$$I=\int_{0}^{1}\,du=_0^1=1-0=1$$


That's a smart approach, MarkFL! Well done!(Clapping)
 
A little more direct
Let $x = 6-u$ so the integral become

$I = \displaystyle - \int_4^2 \dfrac{\sqrt{\ln (3+u)}}{ \sqrt{\ln (3+u)} +\sqrt{\ln (9-u)}}\;du$

Replace $u$ with $x$ and add to the original and like Mark said $2I = \int_2^4 1dx$ gives $I = 1$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
6K