MHB How Can You Measure an Irregularly Shaped Tunnel's Area Over Time?

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Area
AI Thread Summary
To measure the area of an irregularly shaped tunnel that changes over time, one can utilize the distance measurements between points along the tunnel to approximate its area. Since the tunnel lacks a defined geometric shape, traditional area formulas are not applicable. Instead, methods such as numerical integration or statistical approaches like Monte Carlo simulations can be considered for approximating the area based on measured widths at various points. Utilizing approximation methods for definite integrals can provide a practical solution for tracking changes in the tunnel's area over time. This approach allows for effective analysis of whether the tunnel is "shrinking" or not.
Yankel
Messages
390
Reaction score
0
Hello all

I have a tricky problem, maybe you can give me some ideas.

In the attached picture, there is a drawing of a shape, it is some sort of a tunnel, or channel.

This tunnel's area is varying in time, and I am looking for a way to measure it's area, so I can analyze the change over time. The problem is, it does not have a defined shape, not a geometric one, for area formulas, and not a functional one for the use of integrals or numerical evaluation of them.

What I CAN provide, is the distance between any two points in the tunnel. For instance, I can measure the length of the tunnel, approximately (!). I can also measure the width at any point, so basically I can measure the width at varying points, along the length (see arrows).

View attachment 1487

I am looking for a way to approximate the area of the tunnel, so I can know if it's "shrinking" or not. I was thinking maybe about statistical ways, like monte carlo simulation, but I am not sure I am even on the right direction here. Maybe you can give me some ideas for a practical measure ?

Thanks !
 

Attachments

  • Capture.JPG
    Capture.JPG
    15.6 KB · Views: 93
Mathematics news on Phys.org
If you know the width at any point, or set of discrete places, then you can use any of the approximation methods for definite integrals.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top