MHB How Can You Measure an Irregularly Shaped Tunnel's Area Over Time?

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Area
Yankel
Messages
390
Reaction score
0
Hello all

I have a tricky problem, maybe you can give me some ideas.

In the attached picture, there is a drawing of a shape, it is some sort of a tunnel, or channel.

This tunnel's area is varying in time, and I am looking for a way to measure it's area, so I can analyze the change over time. The problem is, it does not have a defined shape, not a geometric one, for area formulas, and not a functional one for the use of integrals or numerical evaluation of them.

What I CAN provide, is the distance between any two points in the tunnel. For instance, I can measure the length of the tunnel, approximately (!). I can also measure the width at any point, so basically I can measure the width at varying points, along the length (see arrows).

View attachment 1487

I am looking for a way to approximate the area of the tunnel, so I can know if it's "shrinking" or not. I was thinking maybe about statistical ways, like monte carlo simulation, but I am not sure I am even on the right direction here. Maybe you can give me some ideas for a practical measure ?

Thanks !
 

Attachments

  • Capture.JPG
    Capture.JPG
    15.6 KB · Views: 88
Mathematics news on Phys.org
If you know the width at any point, or set of discrete places, then you can use any of the approximation methods for definite integrals.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top