timscully
- 4
- 0
1. Variables
Given a generalized basis in three dimensions: e_{1},e_{2},e_{3} and the standard Kronecker delta \delta_{ij}, and using Einstein summation.
With the vector \textbf{x},\textbf{y},\textbf{z} I'm trying to simplify this problem:
2. Problem
\delta_{il} . \delta_{jm} . x_{j}
3. My attempt
\delta_{il}.\delta_{jm} . \textbf{x} . e_{j}<br /> = (e_{i}. e_{l}) . (e_{j} . e_{m}) . \textbf{x} . e_{j}<br /> = (e_{j}. e_{j}) . (e_{l} . e_{m} . e_{j}) . \textbf{x} <br /> = 1 . (e_{l} . e_{m} . e_{j}) . \textbf{x}
Surely this leads to \delta_{il} . \delta_{jm} . x_{j} = 0 as e_{l} , e_{m} , e_{j} are all orthagonal ?
Ultimately I'm trying to prove that
(\delta_{il} . \delta_{jm} - \delta_{jl} . \delta_{im}).x_{j}.y_{l}.z_{m}<br /> = y_{i}.x_{j}.z_{j} - z_{i}.x_{j}.y_{j}
Given a generalized basis in three dimensions: e_{1},e_{2},e_{3} and the standard Kronecker delta \delta_{ij}, and using Einstein summation.
With the vector \textbf{x},\textbf{y},\textbf{z} I'm trying to simplify this problem:
2. Problem
\delta_{il} . \delta_{jm} . x_{j}
3. My attempt
\delta_{il}.\delta_{jm} . \textbf{x} . e_{j}<br /> = (e_{i}. e_{l}) . (e_{j} . e_{m}) . \textbf{x} . e_{j}<br /> = (e_{j}. e_{j}) . (e_{l} . e_{m} . e_{j}) . \textbf{x} <br /> = 1 . (e_{l} . e_{m} . e_{j}) . \textbf{x}
Surely this leads to \delta_{il} . \delta_{jm} . x_{j} = 0 as e_{l} , e_{m} , e_{j} are all orthagonal ?
Ultimately I'm trying to prove that
(\delta_{il} . \delta_{jm} - \delta_{jl} . \delta_{im}).x_{j}.y_{l}.z_{m}<br /> = y_{i}.x_{j}.z_{j} - z_{i}.x_{j}.y_{j}