How Do Different Definitions Impact the Infinite Power Tower's Domain?

Dschumanji
Messages
153
Reaction score
1
I have recently been studying the infinite power tower:

f(x) = x \uparrow\uparrow\infty

The function should actually be written with the infinity replaced by an n and the whole expression evaluated as a limit as n goes to infinity, but I am terrible with Latex. Anyways, I noticed that it is possible to redefine the function recursively:

f(x) = x^{f(x)}

It is possible to use this recursive definition to redefine f(x) as an explicit function of x:

f(x) = \frac{W_{0}(-ln(x))}{-ln(x)}

Where W_{0} is the main branch of the Lambert W Function. Now, I read that Euler proved that the infinite power tower is only defined over the interval [e^{-e}, e^{e^{-1}}]. The first alternate definition of the infinite power tower is defined over the interval (0, e^{e^{-1}}]. The second alternate definition is defined over the interval (0, 1)\cup(1, e^{e^{-1}}].

I have a large number of questions:

Do these differences in the domains of the first and second alternate definitions of the infinite power tower mean that they are not equal to the original definition of the infinite power tower? If this is the case, why are mathematicians justified in using the first and second alternate definitions to deduce the upper limit of the domain for the infinite power tower? How are mathematicians justified in using the second alternate definition as a means of computing the infinite power tower for complex numbers? Are the two alternate definitions not really definitions but statements about what properties the values in the domain and range of the infinite power tower must satisfy? How did I lose information by rewriting the infinite power tower recursively instead of as a limit? Does anyone have any idea how Euler proved the lower limit of the domain for the infinite power tower?
 
Mathematics news on Phys.org
You can't define a function from the reals to the reals recursively, what you mean is defining it implicitly, by saying that f is the function such that f(x) = x^f(x). This "definition" ignores that the domain is not specified, and assumes that if there are solutions on some domain, they are unique.



A far better way is considering the sequence a_(n+1) = b^(a_n), where a_0 = b, and try to find those b for which this sequence converges. That would be equivalent to find the maximal domain for such a power-tower. Euler proved that the sequence defined above converges for b in [e^(-e),e^(e^(-1))].

Your rewriting of the implicitly defined function would be valid, but only wherever the power tower actually converges. Even though the rewritten form would have a larger domain, it doesn't mean that this domain is valid for the power tower itself.

Compare:
1 + x + x^2 + x^3 + ... = 1/(1-x) for -1<x<1. However 1/(1-x) is defined for x = 2, so does that mean 1 + 2 + 2^2 + 2^3 + ... = 1/(1-2) = -1? Of course it does not, the limit of that series does not converge, even though the alternate form has a larger possible domain that the series itself.
 
disregardthat said:
You can't define a function from the reals to the reals recursively
Why not?
 
Dschumanji said:
Why not?

By your example of a recursive definition, you actually mean an implicit definition, which is problematic due to the reasons given above. Please read what a recursive definition is, so that you'll understand why it doesn't make sense to define a real function recursively. (Unless the subject was transfinite recursion, which is something completely different, but not very relevant here)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top