How Do Gauss' and Stokes' Theorems Apply to These Integral Problems?

  • Thread starter Thread starter superpig10000
  • Start date Start date
  • Tags Tags
    Gauss Theorem
superpig10000
Messages
7
Reaction score
0
Hi guys,

I am having trouble with this "simple" problem involving these two theorems:

Find the value of the integral (A dot da) over the surface s, where A = xi - yj + zk and S is the closed surface defined by the cylinder c^2 = x^2 + y^2. The top and bottom of the cylinder are z= 0 and z=d.

From common sense, integrating circular layers from z=0 to z=d should give the volume of a cylinder. The book doesn't have any sample problem so I don't know which theorem to apply, and how.

Here's a more complicated question:

Find the value of the integral (curl A da) over the surface s, where A = yi + zj + xk and S is the closed surface defined by the paraboloid z=1-x^2-y^2 where z >=0

I appreciate any help.
 
Physics news on Phys.org
"Find the value of the integral (A dot da) over the surface s, where A = xi - yj + zk and S is the closed surface defined by the cylinder c^2 = x^2 + y^2. The top and bottom of the cylinder are z= 0 and z=d."
Find div A. (It is a constant.) Then just multiply by the volume of a cylinder.
 
"Find the value of the integral (curl A da) over the surface s, where A = yi + zj + xk and S is the closed surface defined by the paraboloid z=1-x^2-y^2 where z >=0"
By either the div theorem or Stokes' theorem, the integral of curl over a closed surface=0. Prove it.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top