How do I calculate the yield pressure for a Bingham plastic in a tube?

AI Thread Summary
To calculate the yield pressure for a Bingham plastic in a tube, the necessary parameters include the tube's length, diameter, and the liquid's yield stress. The discussion highlights the challenge of finding or engineering a liquid with a specific yield stress, particularly in the range of 150 Pa to 250 Pa, while maintaining low viscosity. It notes that most Bingham plastics are typically suspensions, such as drilling mud, which complicates the search for suitable materials. Suggestions include exploring polar molecules that can form gels, although specific suppliers or formulations remain elusive. Overall, the conversation emphasizes the difficulty in sourcing tailored liquids with desired rheological properties.
Peter Hessellund
Messages
11
Reaction score
0
I have three questions.
1. How do I calculate the yield pressure for a Bingham plastic in a tube if I am given:
Length of tube
Diameter of tube
Yield stress of liquid

2. Is it possible to engineer a liquid to have a specific yield stress ?
3. What kind of material would be suited for engineering a specific yield stress? Could it be done with silicon oils or could it be done with additives to water?
 
Engineering news on Phys.org
Peter Hessellund said:
I have three questions.
1. How do I calculate the yield pressure for a Bingham plastic in a tube if I am given:
Length of tube
Diameter of tube
Yield stress of liquid

2. Is it possible to engineer a liquid to have a specific yield stress ?
3. What kind of material would be suited for engineering a specific yield stress? Could it be done with silicon oils or could it be done with additives to water?
I don't quite understand your first question. Are you asking how much of a pressure difference is required before the bingham plastic begins to flow?
 
  • Like
Likes Peter Hessellund
Yes I am asking how much pressure difference is required for flow. I think that I have read somewhere that a larger initial pressure is required for small diameters.
 
Hi Chester
You already answered the first question for me. I was googeling yield pressure and getting nothing. The right words were the ones you used in your reply to me:)
I still need answers for the two last questions.
The formula is:
upload_2016-12-29_7-33-22.png

Found in this PDF
http://onlinelibrary.wiley.com/doi/10.1002/9780470516430.app7/pdf
 
Peter Hessellund said:
Hi Chester
You already answered the first question for me. I was googeling yield pressure and getting nothing. The right words were the ones you used in your reply to me:)
I still need answers for the two last questions.
The formula is:
View attachment 110883
Found in this PDF
http://onlinelibrary.wiley.com/doi/10.1002/9780470516430.app7/pdf
Nicely done. For questions 2 and 3, I recommend that you google Bingham plastics and dilatent fluids and see what you come up with.
 
Hi Chester

I have already been googeling for hours on question 2 and 3 but the only thing that comes up is general stuff about ketchup or specific stuff about solving the governing equations or simulations. I have so far been unable to find a nice catalogue from a supplier producing a liquid with the desired yield stress or a company claiming to be able to make tailor made liquids with the desired properties. I have not been able to find a chemical formulation of a liquid with at attached yield stress number at all. I am looking for a liquid with a yield stress in the range of 150 Pa to 250 Pa with as low a viscosity as possible or maybe even a shear thinning liquid. The liquid can not be a suspension.
 
Peter Hessellund said:
Hi Chester

I have already been googeling for hours on question 2 and 3 but the only thing that comes up is general stuff about ketchup or specific stuff about solving the governing equations or simulations. I have so far been unable to find a nice catalogue from a supplier producing a liquid with the desired yield stress or a company claiming to be able to make tailor made liquids with the desired properties. I have not been able to find a chemical formulation of a liquid with at attached yield stress number at all. I am looking for a liquid with a yield stress in the range of 150 Pa to 250 Pa with as low a viscosity as possible or maybe even a shear thinning liquid. The liquid can not be a suspension.
Ugh. Most Bingham plastics are typically going to be suspensions. I was thinking of something like drilling mud, which is a suspension of bentonite clay particles. You need to find something that forms a gel, so maybe something with polar molecules with ends that attract. Unfortunately, this is about all that I can help. I don't know much more.
 
Back
Top