How do I complete this convergence proof?

Click For Summary
SUMMARY

This discussion focuses on proving that if a subsequence of a Cauchy sequence converges, then the original Cauchy sequence also converges. The proof utilizes the definitions of Cauchy sequences and convergence, specifically leveraging the properties of subsequences. By establishing bounds for the original sequence and the convergent subsequence, the proof concludes that the original sequence converges to the same limit as the subsequence.

PREREQUISITES
  • Cauchy sequences
  • Convergence of sequences
  • Mathematical notation and limits
  • Understanding of subsequences
NEXT STEPS
  • Study the properties of Cauchy sequences in detail
  • Explore the relationship between subsequences and convergence
  • Learn about the completeness of metric spaces
  • Investigate other convergence proofs in real analysis
USEFUL FOR

Mathematics students, particularly those studying real analysis or sequences and series, as well as educators looking for clear proofs related to convergence properties.

alexmahone
Messages
303
Reaction score
0
Prove that if a subsequence of a Cauchy sequence converges then so does the original Cauchy sequence.

I'm assuming that we're not allowed to use the fact that every Cauchy sequence converges. Here's my attempt:

Let $\displaystyle\{s_n\}$ be the original Cauchy sequence. Let $\displaystyle \{s_{n_k}\}$ be the convergent subsequence.

Given $\epsilon>0$,

$\exists N_1\in\mathbb{N}$ such that $\displaystyle|s_n-s_m|<\frac{\epsilon}{2}$ whenever $n\ge N_1$ and $m\ge N_1$.

$\{s_{n_k}\}$ converges, say, to $L$.

So $\exists N_2\in\mathbb{N}$ such that $\displaystyle|s_{n_k}-L|<\frac{\epsilon}{2}$ whenever $k\ge N_2$.

$\displaystyle|s_n-L|=|s_n-s_{n_k}+s_{n_k}-L|\le |s_n-s_{n_k}|+|s_{n_k}-L|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$ whenever $n\ge N_1$, $n_k\ge N_1$ and $k\ge N_2$.

How do I wrap up this proof by finding the $N$ such that $|s_n-L|<\epsilon$ holds whenever $n\ge N$?
 
Physics news on Phys.org
Hi Alexmahone,

It'll be useful to use the fact that for all $k\in \Bbb N$, $n_k \ge k$. Let $N = \max\{N_1,N_2\}$. If $n \ge N$, then $n\ge N_1$ and $n_N \ge N \ge N_1$, which implies $\lvert s_n - s_{n_N}\rvert < \epsilon/2$. Also, $n \ge N_2$ and $n_N \ge N \ge N_2$, so that $\lvert s_{n_N} - L\rvert < \epsilon/2$. Thus $\lvert s_n - L\rvert \le \lvert s_n - s_{n_N}\rvert + \lvert s_{n_N} - L\rvert < \epsilon/2 + \epsilon/2 = \epsilon$.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K