How do I find the derivative of ln with fractions and trig functions?

  • Thread starter Thread starter Lynne
  • Start date Start date
  • Tags Tags
    Derivative
Lynne
Messages
12
Reaction score
0
Hi,
I need help on this:

Homework Statement



y = ln \frac{\sqrt{3}-\sqrt{2} cos x}{\sqrt{3} +\sqrt{2} cos x}

find y'

The Attempt at a Solution


I know that answer should be: \frac{2\sqrt6 \ sinx}{3-2cos^2 x} , but can't find it:


<br /> <br /> <br /> y&#039;= ( ln \frac{\sqrt{3}-\sqrt{2} cos x}{\sqrt{3} +\sqrt{2} cos x} )&#039; = <br /> <br /> \cfrac{1}{ \cfrac{\sqrt{3}-\sqrt{2} cos x} { \sqrt{3} +\sqrt{2} cos x }}\ <br /> <br /> (\frac{\sqrt{3}-\sqrt{2} cos x} {\sqrt{3} +\sqrt{2} cos x} )&#039; \ <br /> <br /> =\ \frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x}\<br /> <br /> (\ \frac{(\sqrt{3}-\sqrt{2} cos x)&#039; (\sqrt{3} +\sqrt{2} cos x) - (\sqrt{3}-\sqrt{2} cos x) (\sqrt{3} +\sqrt{2} cos x)&#039; }{(\sqrt{3}+\sqrt{2} cos x)^2}\ )=


= \frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x} \<br /> <br /> ( \ ( \dfrac{{\dfrac{1}{2\sqrt3}- \dfrac{cosx}{2\sqrt2}+\sqrt{2}sinx)(\sqrt{3}+\sqrt{2} cos x)-(\sqrt{3}-\sqrt{2} cos x) \ (\dfrac{1}{2\sqrt3}+ \dfrac{cosx}{2\sqrt2}-\sqrt{2}sinx) }} <br /> <br /> { (\sqrt{3}+\sqrt{2} cos x)^2 })\ )<br />


<br /> <br /> = \frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x} <br /> (\frac{1}{2\sqrt3}-\frac{cosx}{2\sqrt2} +\sqrt2sin x +\frac{1}{2\sqrt3}+\frac{cosx}{2\sqrt2}-\sqrt2sin x)<br />



<br /> <br /> =\frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x} \ \frac{1}{\sqrt3}<br />
 
Physics news on Phys.org
You messed up when you took the derivatives while using the quotient rule.

\frac{d}{dx}[\sqrt{3}-\sqrt{2}cos(x)] = 0-\sqrt{2}[-sin(x)] = \sqrt{2}sin(x)

\frac{d}{dx}[\sqrt{3}+\sqrt{2}cos(x)] = -\sqrt{2}sin(x)

The rest is just simplifying, which should be fun =)
 
Last edited:
Lynne said:
Hi,
I need help on this:

Homework Statement



y = ln \frac{\sqrt{3}-\sqrt{2} cos x}{\sqrt{3} +\sqrt{2} cos x}

find y&#039;

Actually, to make your life easier, use properties of the natural log. For example,
\ln\left( \frac{f(x)}{g(x)} \right) = \ln f(x) - \ln g(x)
Then your problem changes to finding y&#039; of
y = \ln \left( \sqrt{3} - \sqrt{2}\cos x \right) - \ln \left( \sqrt{3} + \sqrt{2}\cos x \right)
Computing and simplifying this derivative will be much easier.
 
n!kofeyn said:
Actually, to make your life easier, use properties of the natural log.

Yes, that is much easier! I was being so narrow-minded when approaching this problem because I was trying to figure out where Lynne made a mistake, so I used the same method.
 
Thank you very, very much!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top