Lynne
- 12
- 0
Hi,
I need help on this:
y = ln \frac{\sqrt{3}-\sqrt{2} cos x}{\sqrt{3} +\sqrt{2} cos x}
find y'
I know that answer should be: \frac{2\sqrt6 \ sinx}{3-2cos^2 x} , but can't find it:
<br /> <br /> <br /> y'= ( ln \frac{\sqrt{3}-\sqrt{2} cos x}{\sqrt{3} +\sqrt{2} cos x} )' = <br /> <br /> \cfrac{1}{ \cfrac{\sqrt{3}-\sqrt{2} cos x} { \sqrt{3} +\sqrt{2} cos x }}\ <br /> <br /> (\frac{\sqrt{3}-\sqrt{2} cos x} {\sqrt{3} +\sqrt{2} cos x} )' \ <br /> <br /> =\ \frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x}\<br /> <br /> (\ \frac{(\sqrt{3}-\sqrt{2} cos x)' (\sqrt{3} +\sqrt{2} cos x) - (\sqrt{3}-\sqrt{2} cos x) (\sqrt{3} +\sqrt{2} cos x)' }{(\sqrt{3}+\sqrt{2} cos x)^2}\ )=
= \frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x} \<br /> <br /> ( \ ( \dfrac{{\dfrac{1}{2\sqrt3}- \dfrac{cosx}{2\sqrt2}+\sqrt{2}sinx)(\sqrt{3}+\sqrt{2} cos x)-(\sqrt{3}-\sqrt{2} cos x) \ (\dfrac{1}{2\sqrt3}+ \dfrac{cosx}{2\sqrt2}-\sqrt{2}sinx) }} <br /> <br /> { (\sqrt{3}+\sqrt{2} cos x)^2 })\ )<br />
<br /> <br /> = \frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x} <br /> (\frac{1}{2\sqrt3}-\frac{cosx}{2\sqrt2} +\sqrt2sin x +\frac{1}{2\sqrt3}+\frac{cosx}{2\sqrt2}-\sqrt2sin x)<br />
<br /> <br /> =\frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x} \ \frac{1}{\sqrt3}<br />
I need help on this:
Homework Statement
y = ln \frac{\sqrt{3}-\sqrt{2} cos x}{\sqrt{3} +\sqrt{2} cos x}
find y'
The Attempt at a Solution
I know that answer should be: \frac{2\sqrt6 \ sinx}{3-2cos^2 x} , but can't find it:
<br /> <br /> <br /> y'= ( ln \frac{\sqrt{3}-\sqrt{2} cos x}{\sqrt{3} +\sqrt{2} cos x} )' = <br /> <br /> \cfrac{1}{ \cfrac{\sqrt{3}-\sqrt{2} cos x} { \sqrt{3} +\sqrt{2} cos x }}\ <br /> <br /> (\frac{\sqrt{3}-\sqrt{2} cos x} {\sqrt{3} +\sqrt{2} cos x} )' \ <br /> <br /> =\ \frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x}\<br /> <br /> (\ \frac{(\sqrt{3}-\sqrt{2} cos x)' (\sqrt{3} +\sqrt{2} cos x) - (\sqrt{3}-\sqrt{2} cos x) (\sqrt{3} +\sqrt{2} cos x)' }{(\sqrt{3}+\sqrt{2} cos x)^2}\ )=
= \frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x} \<br /> <br /> ( \ ( \dfrac{{\dfrac{1}{2\sqrt3}- \dfrac{cosx}{2\sqrt2}+\sqrt{2}sinx)(\sqrt{3}+\sqrt{2} cos x)-(\sqrt{3}-\sqrt{2} cos x) \ (\dfrac{1}{2\sqrt3}+ \dfrac{cosx}{2\sqrt2}-\sqrt{2}sinx) }} <br /> <br /> { (\sqrt{3}+\sqrt{2} cos x)^2 })\ )<br />
<br /> <br /> = \frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x} <br /> (\frac{1}{2\sqrt3}-\frac{cosx}{2\sqrt2} +\sqrt2sin x +\frac{1}{2\sqrt3}+\frac{cosx}{2\sqrt2}-\sqrt2sin x)<br />
<br /> <br /> =\frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x} \ \frac{1}{\sqrt3}<br />