How do I prove this? (summation problem)

  • Thread starter Thread starter Gridvvk
  • Start date Start date
AI Thread Summary
The discussion centers on proving the inequality $$\sum_{i=1}^{n} x_i^2 > \frac{1}{n^2}(\sum_{i=1}^{n} x_i)^2$$ for any real observations x_i, with n being an integer greater than 1. Initial attempts involved manipulating the inequality and exploring the Cauchy-Schwartz inequality. By applying Cauchy-Schwartz with y_i set to 1, the participants derived that $$n \sum_{i=1}^{n} x_i^2$$ is indeed greater than $$\sum_{i=1}^{n} x_i^2$$, confirming the original inequality. The proof successfully demonstrates the validity of the inequality under the given conditions.
Gridvvk
Messages
54
Reaction score
1
$$\sum_{i=1}^{n} x_i^2 > \frac{1}{n^2}(\sum_{i=1}^{n} x_i)^2$$

Note: each x_i is any observation (or statistic) it can be any real number and need not be constrained in anyway whatsoever, though you can take n > 1 and integer (i.e. there is at least two observations and the number of observations is discrete).

I'm not sure if this true or not, but part of my analysis to a particular problem assumed this was true, and I'm trying to prove it is indeed true (it seems to be case for any examples I come up with).

So far I came up with,
$$n^2 \sum_{i=1}^{n} x_i^2 > \sum_{i=1}^{n} x_i^2 + 2\sum_{i \neq j, i > j} x_ix_j$$
$$(n^2 - 1)\sum_{i=1}^{n}x_i^2 > 2\sum_{i \neq j,\: i > j} x_ix_j$$

and I'm not sure how to proceed from there.
 
Mathematics news on Phys.org
Are you familiar with the Cauchy-Schwartz inequality?
 
micromass said:
Are you familiar with the Cauchy-Schwartz inequality?

Yes I am, but I'm not sure how to use it here. If I was interested in both a x_i and y_i then I would see how to use it here, but here I'm only looking at a x_i.
 
Gridvvk said:
Yes I am, but I'm not sure how to use it here. If I was interested in both a x_i and y_i then I would see how to use it here, but here I'm only looking at a x_i.

Maybe take all ##y_i = 1##?
 
  • Like
Likes 1 person
micromass said:
Maybe take all ##y_i = 1##?

Hmm. Alright then by Cauchy-Schwartz I can say,

$$(\sum_{i=1}^{n} x_i \times 1)^2 \le (\sum_{i=1}^{n}x_i^2) (\sum_{i=1}^{n}1) = n\sum_{i=1}^{n}x_i^2 < n^2 \sum_{i=1}^{n}x_i^2$$

Which was what I wanted.

Thanks!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top