How do I simplify <n|n> for Hermetian Operators?

  • Thread starter Thread starter Biest
  • Start date Start date
Biest
Messages
66
Reaction score
0
Hi,

So for an harmonic oscillator we need to to find the average value for x^4, so &lt;n|x^4|n&gt;. We split it up to \sum_m |&lt;n|x^2|n&gt;|^2 and recognize that only m = n+2, m=n and m = n-2 can be used. We find that

m=n

\frac{\hbar}{2m\omega}&lt;n|\hat{A}\hat{A^\dagger}|n&gt;

m= n+2 \frac{\hbar}{2m\omega}&lt;n+2|\hat{A^\dagger}\hat{A^\dagger}|n&gt;

m = n-2

\frac{\hbar}{2m\omega}&lt;n-2|\hat{A}\hat{A}|n&gt;

So we can reduce it all to

&lt;n|x^4|n&gt; = \frac{1}{4} \hbar^2 \omega^2 (2n+1)^2 + \frac{1}{2} (\frac{\hbar}{m \omega})^2 &lt;n|n&gt;How I simplify the &lt;n|n&gt;.

Thanks.

Cheers,

Biest
 
Last edited:
Physics news on Phys.org
The basis states are orthonormal, so &lt;n|m&gt;=\delta_{mn}.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top