Biest
- 66
- 0
Hi,
So for an harmonic oscillator we need to to find the average value for x^4, so <n|x^4|n>. We split it up to \sum_m |<n|x^2|n>|^2 and recognize that only m = n+2, m=n and m = n-2 can be used. We find that
m=n
\frac{\hbar}{2m\omega}<n|\hat{A}\hat{A^\dagger}|n>
m= n+2 \frac{\hbar}{2m\omega}<n+2|\hat{A^\dagger}\hat{A^\dagger}|n>
m = n-2
\frac{\hbar}{2m\omega}<n-2|\hat{A}\hat{A}|n>
So we can reduce it all to
<n|x^4|n> = \frac{1}{4} \hbar^2 \omega^2 (2n+1)^2 + \frac{1}{2} (\frac{\hbar}{m \omega})^2 <n|n>How I simplify the <n|n>.
Thanks.
Cheers,
Biest
So for an harmonic oscillator we need to to find the average value for x^4, so <n|x^4|n>. We split it up to \sum_m |<n|x^2|n>|^2 and recognize that only m = n+2, m=n and m = n-2 can be used. We find that
m=n
\frac{\hbar}{2m\omega}<n|\hat{A}\hat{A^\dagger}|n>
m= n+2 \frac{\hbar}{2m\omega}<n+2|\hat{A^\dagger}\hat{A^\dagger}|n>
m = n-2
\frac{\hbar}{2m\omega}<n-2|\hat{A}\hat{A}|n>
So we can reduce it all to
<n|x^4|n> = \frac{1}{4} \hbar^2 \omega^2 (2n+1)^2 + \frac{1}{2} (\frac{\hbar}{m \omega})^2 <n|n>How I simplify the <n|n>.
Thanks.
Cheers,
Biest
Last edited: