vela said:
Or even simpler, try a solution of the form y=xr.
This, the equation is of the Euler type:
<br />
(a x + b)^{n} \, y^{(n)} + a_{1} \, (a x + b)^{n - 1} \, y^{(n - 1)} + \ldots + a_{n} \, y = 0<br />
If you perform the substitution of the independent variable:
<br />
a x + b \equiv \exp(t) \Rightarrow a \, dx = \exp(t) \, dt<br />
then the derivatives transform as:
<br />
\frac{d}{dx} = \frac{dt}{dx} \, \frac{d}{dt} = a \, \exp(-t) \frac{d}{dt}<br />
<br />
\frac{d^{2}}{dx^{2}} = a \, \exp(-t) \, \frac{d}{dt}\left(a \, \exp(-t) \, \frac{d}{dt} \right) = a^{2} \, exp(-2 t) \, \left(\frac{d^{2}}{dt^{2}} - \frac{d}{dt}\right)<br />
In general:
<br />
\frac{d^{n}}{dx^{n}} = a^{n} \, \exp(-n \, t) \, \sum_{k = 0}^{n - 1}{p^{(n)}_{k} \, \frac{d^{n - k}}{d t^{n - k}}}<br />
and one can find a recursive relation for the coefficients \{p^{(n)}_{k}\} by differentiating one more time:
<br />
\frac{d^{n + 1}}{dx^{n + 1}} = \frac{d}{dx} \, \left( a^{n} \, \exp(-n \, t) \, \sum_{k = 0}^{n - 1}{p^{(n)}_{k} \, \frac{d^{n - k}}{d t^{n - k}}}\right)<br />
<br />
= a^{n + 1} \, \exp(-t) \, \frac{d}{dt} \, \left(\exp(-n \, t) \, \sum_{k = 0}^{n - 1}{p^{(n)}_{k} \, \frac{d^{n - k}}{d t^{n - k}}}\right)<br />
<br />
= a^{n + 1} \, \exp(-t) \, \left(\exp(-n \, t) \, \sum_{k = 0}^{n - 1}{p^{(n)}_{k} \, \frac{d^{n - k + 1}}{d t^{n - k + 1}}} - n \, \exp(-n \, t) \, \sum_{k = 0}^{n - 1}{p^{(n)}_{k} \, \frac{d^{n - k}}{d t^{n - k}}}\right)<br />
<br />
= a^{n + 1} \, \exp\left(-(n + 1) \, t\right) \, \left[ p^{(n)}_{0} \, \frac{d^{n + 1}}{dt^{n + 1}} + \sum_{k = 1}^{n - 1}{p^{(n)}_{k} \, \frac{d^{n + 1 - k}}{dt^{n + 1 - k}} - n \, \sum_{k = 1}^{n - 1}{p^{(n)}_{k - 1} \, \frac{d^{n + 1 - k}}{dt^{n + 1 - k}}}} - n \, p^{(n)}_{n - 1} \, \frac{d}{dt}\right]<br />
Comparing this with the formula for n + 1
<br />
\frac{d^{n + 1}}{dx^{n + 1}} = a^{n + 1} \, \exp\left(-(n + 1) \, t\right) \, \sum_{k = 0}^{n}{p^{(n + 1)}_{k} \, \frac{d^{n + 1 - k}}{d t^{n + 1- k}}}<br />
we see that the following recursion relations for the coefficients hold:
<br />
p^{(n + 1)}_{0} = p^{(n)}_{0}, \; p^{(1)}_{0} = 1 \Rightarrow p^{(n)}_{0} = 1<br />
<br />
p^{(n + 1)}_{k} = p^{(n)}_{k} - n \, p^{(n)}_{k - 1}, 1 \le k \le n - 1<br />
<br />
p^{(n + 1)}_{n} = - n \, p^{(n)}_{n - 1}, p^{(2)}_{1} = -1 \Rightarrow p^{(n)}_{n - 1} = (-1)^{n - 1} \, (n - 1)!, n \ge 2<br />
In any case, after performing all the substitutions and noticing that:
<br />
(a x + b)^{n} = \left[\exp(t)\right]^{n} = \exp(n \, t)<br />
the exponential factors cancel and you get an Linear Ordinary Differential Equation with
constant coefficients.
Since the ansatz you put into solve these is of the form y = \exp(k t) and in the above case a = 1, b = 0, we have y = \exp(k t) = \left[\exp(t)\right]^{k} = x^{k} as a direct ansatz. However, this is not suitable for the cases of double or complex conjugate roots (for complex
k) and the previous procedure should make it clear what the solution is in those cases.