UbikPkd
- 9
- 0
Ok here goes...
z=x^{2}+y^{2}
x=rcos\vartheta
y=r sin\vartheta
Find:
\[ \frac{\partial z}{\partial x}_{y}, <br /> \[ \frac{\partial z}{\partial <br /> <br /> \vartheta}_{x}, <br /> \[ \frac{\partial z}{\partial r}_{y}, <br /> \[ \frac{\partial z}{\partial r}_{ <br /> <br /> \vartheta}, <br />
___________________________
\[ \frac{\partial z}{\partial x}_{y} <br /> <br /> = 2x
this seems right to me (though I'm not
sure if I'm supposed to use a chain rule),
it's the next ones I'm not sure about...
___________________________
<br /> \[ \frac{\partial z}{\partial <br /> <br /> \vartheta}_{x}=
I've been at this one for hours, i think i
can use the following, but I'm getting
nowhere.
dz= \[ \frac{\partial z}{\partial <br /> <br /> x}_{y}dx + \[ \frac{\partial z}{\partial <br /> <br /> y}_{x}dy
dx= \[ \frac{\partial x}{\partial <br /> <br /> r}_{\vartheta}dr + \[ \frac{\partial <br /> <br /> x}{\partial \vartheta}_{r}d\vartheta
dy= \[ \frac{\partial y}{\partial <br /> <br /> r}_{\vartheta}dr + \[ \frac{\partial <br /> <br /> y}{\partial \vartheta}_{r}d\vartheta
so...
dz= \[ \frac{\partial z}{\partial <br /> <br /> x}_{y} \left[\[ \frac{\partial x}{\partial <br /> <br /> r}_{\vartheta}dr + \[ \frac{\partial <br /> <br /> x}{\partial <br /> <br /> \vartheta}_{r}d\vartheta\right]+ \[ <br /> <br /> \frac{\partial z}{\partial y}_{x}\left[\[ <br /> <br /> \frac{\partial y}{\partial <br /> <br /> r}_{\vartheta}dr + \[ \frac{\partial <br /> <br /> y}{\partial <br /> <br /> \vartheta}_{r}d\vartheta\right]
can i divide through by \partial <br /> <br /> \vartheta_{x} and then work it all
out to get
<br /> \[ \frac{\partial z}{\partial <br /> <br /> \vartheta}_{x} ?
please help, i don't have a clue what I'm
doing!
z=x^{2}+y^{2}
x=rcos\vartheta
y=r sin\vartheta
Find:
\[ \frac{\partial z}{\partial x}_{y}, <br /> \[ \frac{\partial z}{\partial <br /> <br /> \vartheta}_{x}, <br /> \[ \frac{\partial z}{\partial r}_{y}, <br /> \[ \frac{\partial z}{\partial r}_{ <br /> <br /> \vartheta}, <br />
___________________________
\[ \frac{\partial z}{\partial x}_{y} <br /> <br /> = 2x
this seems right to me (though I'm not
sure if I'm supposed to use a chain rule),
it's the next ones I'm not sure about...
___________________________
<br /> \[ \frac{\partial z}{\partial <br /> <br /> \vartheta}_{x}=
I've been at this one for hours, i think i
can use the following, but I'm getting
nowhere.
dz= \[ \frac{\partial z}{\partial <br /> <br /> x}_{y}dx + \[ \frac{\partial z}{\partial <br /> <br /> y}_{x}dy
dx= \[ \frac{\partial x}{\partial <br /> <br /> r}_{\vartheta}dr + \[ \frac{\partial <br /> <br /> x}{\partial \vartheta}_{r}d\vartheta
dy= \[ \frac{\partial y}{\partial <br /> <br /> r}_{\vartheta}dr + \[ \frac{\partial <br /> <br /> y}{\partial \vartheta}_{r}d\vartheta
so...
dz= \[ \frac{\partial z}{\partial <br /> <br /> x}_{y} \left[\[ \frac{\partial x}{\partial <br /> <br /> r}_{\vartheta}dr + \[ \frac{\partial <br /> <br /> x}{\partial <br /> <br /> \vartheta}_{r}d\vartheta\right]+ \[ <br /> <br /> \frac{\partial z}{\partial y}_{x}\left[\[ <br /> <br /> \frac{\partial y}{\partial <br /> <br /> r}_{\vartheta}dr + \[ \frac{\partial <br /> <br /> y}{\partial <br /> <br /> \vartheta}_{r}d\vartheta\right]
can i divide through by \partial <br /> <br /> \vartheta_{x} and then work it all
out to get
<br /> \[ \frac{\partial z}{\partial <br /> <br /> \vartheta}_{x} ?
please help, i don't have a clue what I'm
doing!
