To solve the integral \mbox{$\int x\sin x \sin 2x \,dx$}, let's first solve \mbox{$\int \sin x \sin 2x \,dx$.}
<br />
\begin{equation*}<br />
\begin{split}<br />
\int \sin{x}\sin{2x}<br />
&= \int 2 \sin^2 x \cos x\,dx \\<br />
&= \int 2 u^2 du \quad (u = \sin x) \\<br />
&= \frac{2}{3} u^3 + C\\<br />
&= \frac{2}{3} \sin^3 x + C<br />
\end{split}<br />
\end{equation*}<br />
Now, to solve \mbox{$\int x\sin x \sin 2x \,dx$} we may now do integration by parts via
<br />
\begin{equation*}<br />
\begin{split}<br />
u &= x \\<br />
dv &= \sin x \sin 2x \,dx \\<br />
du &= dx \\<br />
v &= \frac{2}{3} \sin^3 x<br />
\end{split}<br />
\end{equation*}<br />
Which yields:
<br />
\begin{equation*}<br />
\begin{split}<br />
\int x\sin x \sin 2x \,dx<br />
&= x \frac{2}{3} \sin^3 x - \int \frac{2}{3} \sin^3 x \,dx \\<br />
&= \frac{2}{3} x \sin^3 x - \frac{2}{3} \int \sin x (1 - \cos^2 x)\,dx \\<br />
&= \frac{2}{3} x \sin^3 x - \frac{2}{3} \left( \int \sin x \, dx - \int \sin x \cos^2 x \, dx \right) \\<br />
&= \frac{2}{3} x \sin^3 x - \frac{2}{3}\left( -\cos x + \frac{1}{3} \cos^3 x \right) + C \\<br />
&= \frac{2}{3} x \sin^3 x + \frac{2}{3} \cos x - \frac{2}{9} \cos^3 x + C<br />
\end{split}<br />
\end{equation*}<br />