How do I solve \int^a_b x\sin{x}\sin{2x} dx using integration by parts?

  • Thread starter Thread starter PrudensOptimus
  • Start date Start date
  • Tags Tags
    Dx
PrudensOptimus
Messages
641
Reaction score
0
\int^a_b x\sin{x}\sin{2x} dx

answers? I tried to solve once, it took like 3 pages.
 
Physics news on Phys.org
To solve the integral \mbox{$\int x\sin x \sin 2x \,dx$}, let's first solve \mbox{$\int \sin x \sin 2x \,dx$.}

<br /> \begin{equation*}<br /> \begin{split}<br /> \int \sin{x}\sin{2x}<br /> &amp;= \int 2 \sin^2 x \cos x\,dx \\<br /> &amp;= \int 2 u^2 du \quad (u = \sin x) \\<br /> &amp;= \frac{2}{3} u^3 + C\\<br /> &amp;= \frac{2}{3} \sin^3 x + C<br /> \end{split}<br /> \end{equation*}<br />

Now, to solve \mbox{$\int x\sin x \sin 2x \,dx$} we may now do integration by parts via

<br /> \begin{equation*}<br /> \begin{split}<br /> u &amp;= x \\<br /> dv &amp;= \sin x \sin 2x \,dx \\<br /> du &amp;= dx \\<br /> v &amp;= \frac{2}{3} \sin^3 x<br /> \end{split}<br /> \end{equation*}<br />

Which yields:

<br /> \begin{equation*}<br /> \begin{split}<br /> \int x\sin x \sin 2x \,dx<br /> &amp;= x \frac{2}{3} \sin^3 x - \int \frac{2}{3} \sin^3 x \,dx \\<br /> &amp;= \frac{2}{3} x \sin^3 x - \frac{2}{3} \int \sin x (1 - \cos^2 x)\,dx \\<br /> &amp;= \frac{2}{3} x \sin^3 x - \frac{2}{3} \left( \int \sin x \, dx - \int \sin x \cos^2 x \, dx \right) \\<br /> &amp;= \frac{2}{3} x \sin^3 x - \frac{2}{3}\left( -\cos x + \frac{1}{3} \cos^3 x \right) + C \\<br /> &amp;= \frac{2}{3} x \sin^3 x + \frac{2}{3} \cos x - \frac{2}{9} \cos^3 x + C<br /> \end{split}<br /> \end{equation*}<br />
 
Last edited:
Amazing. I have learned yet a new way from you.

Out of curiousity, what background art thou?
 
Certainly not a professional TeX coding background. :smile: Took me what? Half an hour to get it that way? And even with that I couldn't get a nice table for the IBP. :frown:
 
Back
Top