p53ud0 dr34m5
- 94
- 0
im hoping i worked this out right; its long:
\int x(81-x^2)^{5/2}dx
the integral contains a^2-x^2, so i set x=asin\theta. that would make x=9sin\theta and dx=9cos\theta d\theta:
\int 9sin\theta(81-81sin^2\theta)^{5/2}9cos\theta d\theta = \int 9sin\theta[81(1-sin^2\theta)]^{5/2}9cos\theta d\theta
the integral now contains 1-sin^2\theta =cos^2\theta
\int 9sin\theta(9cos\theta)^59cos\theta d\theta
i used u-sub by setting u=9cos\theta and du=-9sin\theta d\theta.
-\int u^6 du=-\frac{u^7}{7}+C
i plugged my u back in:
-\frac{(9cos\theta)^7}{7}+C
then, i drew my little triangle.
cos\theta=\frac{\sqrt{81-x^2}}{9}
i plugged that into the cos\theta and simplified and came out with:
-\frac{(\sqrt{81-x^2})^7}{7}+C
that's my answer
\int x(81-x^2)^{5/2}dx
the integral contains a^2-x^2, so i set x=asin\theta. that would make x=9sin\theta and dx=9cos\theta d\theta:
\int 9sin\theta(81-81sin^2\theta)^{5/2}9cos\theta d\theta = \int 9sin\theta[81(1-sin^2\theta)]^{5/2}9cos\theta d\theta
the integral now contains 1-sin^2\theta =cos^2\theta
\int 9sin\theta(9cos\theta)^59cos\theta d\theta
i used u-sub by setting u=9cos\theta and du=-9sin\theta d\theta.
-\int u^6 du=-\frac{u^7}{7}+C
i plugged my u back in:
-\frac{(9cos\theta)^7}{7}+C
then, i drew my little triangle.
cos\theta=\frac{\sqrt{81-x^2}}{9}
i plugged that into the cos\theta and simplified and came out with:
-\frac{(\sqrt{81-x^2})^7}{7}+C
that's my answer