How Do LIGO Photons Experience Shapiro Delay in Gravitational Waves?

Leo.Ki
Messages
23
Reaction score
0
I am trying to understand how the photons in the LIGO beams behave when going along the "slopes" of the gravitational waves, in particular how the Shapiro delay gets factored into the resulting interference.

To simplify the situation, suppose that a LIGO photon starts orthogonally to a wave "crest." Both traveling in the same direction at the same velocity, the photon will get Shapiro-delayed at a constant rate until it reflects upon the mirror. Then on the way back it goes "down the slope" and the calculation becomes more complicated. Depending on the gravitational wave's wave length and the beam's length, it might reach the "trough" and maybe pass another "crest."

Since the gravitational waves are analysed only through the interferences, how can we be sure of what the Shapiro delay was really and what the actual "orientation" of the wave was? It looks like a puzzle to solve, possibly with several solutions. I know that multiple measures get correlated to solve this, but still, I am wondering how we can be sure.
 
Physics news on Phys.org
The time taken for an EM wave to pass the LIGO arms is about 27 microseconds. This is much smaller than the GW period.
 
Thank you Orodruin. The 250 Hz peak frequency is very small indeed - even if, for the way back in the case study I described, it is double that - or the arm is very short. But on theoretical grounds, how important is the Shapiro effect compared to the other effects causing the interference detection? Or is the Shapiro effect ultimately exactly the same thing as what is described as arm length change in the papers?
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
Back
Top