How Do Quantum Harmonic Oscillator Ladder Operators Affect State Vectors?

glederfein
Messages
7
Reaction score
0

Homework Statement


Given a quantum harmonic oscillator, calculate the following values:
\left \langle n \right | a \left | n \right \rangle, \left \langle n \right | a^\dagger \left | n \right \rangle, \left \langle n \right | X \left | n \right \rangle, \left \langle n \right | P \left | n \right \rangle


Homework Equations


Hamiltonian: H=\frac{P^2}{2m}+\frac{1}{2}m\omega^2X^2
Ladder operators:
a=\sqrt{\frac{m\omega}{2\hbar}}\left ( X + \frac{i}{m\omega}P \right )
a^\dagger=\sqrt{\frac{m\omega}{2\hbar}}\left(X-\frac{i}{m\omega}P \right )
\left [ a,a^\dagger \right ] = 1
\left [ a^\dagger a,a \right ] = -a
N operator:
N=a^\dagger a
N\left | n \right \rangle = n\left | n \right \rangle
a^\dagger \left | n \right \rangle = \sqrt{n+1} \left | n+1 \right \rangle
a \left | n \right \rangle = \sqrt{n} \left | n-1 \right \rangle
\left | n \right \rangle = \frac{(a^\dagger)^n}{\sqrt{n!}} \left | 0 \right \rangle


The Attempt at a Solution


\left \langle n \right | a \left | n \right \rangle = \left \langle n \right | \sqrt{n} \left | n-1 \right \rangle = <br /> \sqrt{n} \left \langle n | n-1 \right \rangle = <br /> \sqrt{n} \left ( \left | n \right \rangle \right ) ^ \dagger \left | n-1 \right \rangle = <br /> \sqrt{n} \left ( \frac{(a^\dagger)^n}{\sqrt{n!}} \left | 0 \right \rangle \right ) ^ \dagger \frac{(a^\dagger)^{n-1}}{\sqrt{(n-1)!}} \left | 0 \right \rangle = <br /> \sqrt{\frac{n}{n!(n-1)!}} \left \langle 0 \right | a^n (a^\dagger)^{n-1} \left | 0 \right \rangle

Not sure how to continue from here...
 
Physics news on Phys.org
glederfein said:

The Attempt at a Solution


\left \langle n \right | a \left | n \right \rangle = \left \langle n \right | \sqrt{n} \left | n-1 \right \rangle = <br /> \sqrt{n} \left \langle n | n-1 \right \rangle = <br /> \sqrt{n} \left ( \left | n \right \rangle \right ) ^ \dagger \left | n-1 \right \rangle = <br /> \sqrt{n} \left ( \frac{(a^\dagger)^n}{\sqrt{n!}} \left | 0 \right \rangle \right ) ^ \dagger \frac{(a^\dagger)^{n-1}}{\sqrt{(n-1)!}} \left | 0 \right \rangle = <br /> \sqrt{\frac{n}{n!(n-1)!}} \left \langle 0 \right | a^n (a^\dagger)^{n-1} \left | 0 \right \rangle
.

When you get to \left \langle n \right | a \left | n \right \rangle = \left \langle n \right | \sqrt{n} \left | n-1 \right \rangle = <br /> \sqrt{n} \left \langle n | n-1 \right \rangle you should be able to see the answer.
 
TSny said:
When you get to \left \langle n \right | a \left | n \right \rangle = \left \langle n \right | \sqrt{n} \left | n-1 \right \rangle = <br /> \sqrt{n} \left \langle n | n-1 \right \rangle you should be able to see the answer.

Is the answer zero because eigenvectors are always perpendicular to one another?
Doesn't that mean that all the four values in the question are zero?
 
Yes, eigenvectors of a Hermitian operator that correspond to different eigenvalues are orthogonal.

And, yes, all 4 are zero :smile:
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top