glederfein
- 7
- 0
Homework Statement
Given a quantum harmonic oscillator, calculate the following values:
\left \langle n \right | a \left | n \right \rangle, \left \langle n \right | a^\dagger \left | n \right \rangle, \left \langle n \right | X \left | n \right \rangle, \left \langle n \right | P \left | n \right \rangle
Homework Equations
Hamiltonian: H=\frac{P^2}{2m}+\frac{1}{2}m\omega^2X^2
Ladder operators:
a=\sqrt{\frac{m\omega}{2\hbar}}\left ( X + \frac{i}{m\omega}P \right )
a^\dagger=\sqrt{\frac{m\omega}{2\hbar}}\left(X-\frac{i}{m\omega}P \right )
\left [ a,a^\dagger \right ] = 1
\left [ a^\dagger a,a \right ] = -a
N operator:
N=a^\dagger a
N\left | n \right \rangle = n\left | n \right \rangle
a^\dagger \left | n \right \rangle = \sqrt{n+1} \left | n+1 \right \rangle
a \left | n \right \rangle = \sqrt{n} \left | n-1 \right \rangle
\left | n \right \rangle = \frac{(a^\dagger)^n}{\sqrt{n!}} \left | 0 \right \rangle
The Attempt at a Solution
\left \langle n \right | a \left | n \right \rangle = \left \langle n \right | \sqrt{n} \left | n-1 \right \rangle = <br /> \sqrt{n} \left \langle n | n-1 \right \rangle = <br /> \sqrt{n} \left ( \left | n \right \rangle \right ) ^ \dagger \left | n-1 \right \rangle = <br /> \sqrt{n} \left ( \frac{(a^\dagger)^n}{\sqrt{n!}} \left | 0 \right \rangle \right ) ^ \dagger \frac{(a^\dagger)^{n-1}}{\sqrt{(n-1)!}} \left | 0 \right \rangle = <br /> \sqrt{\frac{n}{n!(n-1)!}} \left \langle 0 \right | a^n (a^\dagger)^{n-1} \left | 0 \right \rangle
Not sure how to continue from here...