A How Do SU(3) Tensors Decompose into Irreducible Components?

  • A
  • Thread starter Thread starter PineApple2
  • Start date Start date
  • Tags Tags
    Su(3) Tensors
PineApple2
Messages
49
Reaction score
0
Suppose that in the tensor component ##T^a_b ## the upper index is the ## \bf{3}## component and the lower index is the ##\bf{\bar{3}} ## component. To be concrete, consider the decomposition
<br /> u^iv_j= \left( u^iv_j-\frac{1}{3}\delta^i_j u^kv_k \right) +\frac{1}{3}\delta^i_j u^kv_k<br />
which corresponds to
<br /> \bf{3}\otimes\bf{\bar{3}}=\bf{8}\oplus\bf{1}<br />
I want to see that indeed the transformation of ##u^iv_j ## is reducible, but the transformations of ## \left( u^iv_j-\frac{1}{3}\delta^i_j u^kv_k \right)## and ##\left(\frac{1}{3}\delta^i_j u^kv_k \right) ## are irreducible. My thought was to contract each of the supposedly irreducible tensors with the only possible invariant tensors, namely ##\delta^i_j ##, ##\epsilon^{ijk} ##, ##\epsilon_{ijk} ##, and to see that in each case I get zero, which means there are no invariant subspaces. So, taking ## \left( u^iv_j-\frac{1}{3}\delta^i_j u^kv_k \right)##
<br /> \delta^j_i \left( u^iv_j-\frac{1}{3}\delta^i_j u^kv_k \right) = u^iv_i - \frac{1}{3}\delta^i_i u^kv_k =0<br />
is that a correct way to check irreducibility? and if so, how do I check this for ##\epsilon^{ijk} ## and ##\epsilon_{ijk} ##?
 
Hi - yes you are along the right lines. Just remember that anything contracted over all the indices of epsilon will be a singlet because of the determinant condition on SU(n) groups... and that all tensors can be decomposed into a symmetric and an antisymmetric part...(without giving away the answer oops).

However there is another way of doing these types of computation that is much more elegant - have you looked into Young Tableaux?
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Back
Top