How do u show that a matrix is diagonizable?

  • Thread starter Thread starter himurakenshin
  • Start date Start date
  • Tags Tags
    Matrix
himurakenshin
Messages
21
Reaction score
0
How do u show that a matrix is diagonizable ?
Thanks
 
Physics news on Phys.org
by finding a basis of eigenvectors, by demonstrating that its minimal polynomial has rank n (where the matrix is nxn), occasionally by finding n distinct eigenvalues, or sometimes by showing that the field is algebraically closed and the matrix is in the image of some group homomorphism, or perhaps in some cases by showing that it is hermitian...

just show that it has a basis of eigenvectors, ok?
 
ok thanks alot
 
read my short book posted near here for several different standard criteria for diagonalizability.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top