- 6,221
- 31
Homework Statement
Find the roots of the equation
z^3=-(4\sqrt{3})+4i
giving your answers in the form re^{i\theta}, where r>0 and 0\leq \theta<2\pi
Denoting these roots by z_1,z_2,z_3, show that, for every positive integer k.
z_1^{3k}+z_2^{3k}+z_3^{3k}=3(2^{3k}e^{\frac{5}{6}k\pi i})
Homework Equations
complex number formulas
The Attempt at a Solution
z^3=-(4\sqrt{3})+4i
= z^3=8e^{\frac{5}{6}\pi i}z=2e^{\frac{5}{18}\pi i}
z=2e^{(\frac{5}{18}\pi + \frac{2k}{3})i} k=0,1,2
therefore the roots are
z=2e^{\frac{5}{18}\pi i},2e^{\frac{17}{18}\pi i},2e^{\frac{29}{18}\pi i}
subbing the roots into what they want me to show(2e^{\frac{5}{18}\pi i})^{3k}+(2e^{\frac{17}{18}\pi i})^{3k}+(2e^{\frac{29}{18}\pi i})^{3k}
2^{3k}(e^{\frac{5k}{6}\pi i}+e^{\frac{17k}{6}\pi i}+e^{\frac{29k}{18}\pi i})
2^{3k}e^{\frac{5}{6}\pi i}(1+e^{2k}+e^{4k})
Now I am stuck.