How Do You Calculate Displacement for an Irregular Cantilever Beam?

  • Thread starter Thread starter timmy996
  • Start date Start date
  • Tags Tags
    Cantilever
AI Thread Summary
To calculate the displacement of an irregular cantilever beam, one must consider the beam's segmented structure, which includes horizontal and diagonal segments with varying moment of inertia. The procedure involves calculating flexure and deflection for each segment sequentially, starting from segment 2 and then segment 1, to determine the total deflection at point C. The curvature at point C is then used to find the tangent for segment 3, allowing for the calculation of deflection at point D. Integration of the moment-curvature relationship can still be applied, but the geometry of the beam must be accounted for in the calculations. Understanding the relationship between the segments and their respective moment of inertia is crucial for accurate displacement determination.
timmy996
Messages
1
Reaction score
0
Hello,

I am trying to figure out how to calculate displacement for an irregular cantilever beam, i.e. one that is not the normal straight-beam that you would see in a textbook.

Please see the attached image. If the left end is fixed, and I want to calculate the displacement of point A due to an applied force at that point, how would I go about it?

Are you still able to use M_x = EI * d^2y/dx^2 and solve for displacement by integrating? I am not exactly sure how the geometry of the weird bended shape comes into play. Thanks.

- T
 

Attachments

  • cannot-ilever.jpg
    cannot-ilever.jpg
    8.4 KB · Views: 500
Engineering news on Phys.org
The cantilever beam has three segments:
1) Horizontal segment with moment inertia I_1
2) Diagonal segment at middle with moment inertia I_2
3) Diagonal segment at end with moment inertia I_3

Note: I_2 is determined relative to global Y axis (not local Y axis). Thus, I_2>I_1 as illustrated. I_3 is not required for calculations; only its horizontal length is needed.

The beam has four points
A) At support
B) Right of segment 1
C) Right of segment 2
D) Right of segment 3

Procedure:
a) Calculate flexure and deflection over segment 2
b) Calculate flexure and deflection over segment 1
c) Add deflection 1 and 2 to give total deflection at point C
d) Determine curvature at point C
e) Determine tangent of segment 3, and thus deflection of segment 4
f) Add deflection of point step (c) to setup (e) to yield total deflection at (4)
 
Thread 'I need a concave mirror with a focal length length of 150 feet'
I need to cut down a 3 year old dead tree from top down so tree causes no damage with small pieces falling. I need a mirror with a focal length of 150 ft. 12" diameter to 36" diameter will work good but I can't think of any easy way to build it. Nothing like this for sale on Ebay. I have a 30" Fresnel lens that I use to burn stumps it works great. Tree service wants $2000.
Hi all, i have some questions about the tesla turbine: is a tesla turbine more efficient than a steam engine or a stirling engine ? about the discs of the tesla turbine warping because of the high speed rotations; does running the engine on a lower speed solve that or will the discs warp anyway after time ? what is the difference in efficiency between the tesla turbine running at high speed and running it at a lower speed ( as fast as possible but low enough to not warp de discs) and: i...
Thread 'Where is my curb stop?'
My water meter is submerged under water for about 95% of the year. Today I took a photograph of the inside of my water meter box because today is one of the rare days that my water meter is not submerged in water. Here is the photograph that I took of my water meter with the cover on: Here is a photograph I took of my water meter with the cover off: I edited the photograph to draw a red circle around a knob on my water meter. Is that knob that I drew a red circle around my meter...
Back
Top