How Do You Calculate Sin(i) Using Euler's Formula?

  • Thread starter Thread starter soopo
  • Start date Start date
soopo
Messages
222
Reaction score
0

Homework Statement



How can you calculate the value of sin(i)?
 
Physics news on Phys.org
e^{i\theta}=\cos\theta+i\sin\theta, and eventually you get to \sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top