How Do You Calculate the Impact Point of a Bomb Released from a Moving Airplane?

AI Thread Summary
To calculate the impact point of a bomb released from a moving airplane, the problem involves understanding projectile motion. The bomber flies horizontally at 275 m/s from an altitude of 3000 m, and air resistance is neglected. The bomb's horizontal distance from the release point can be determined by calculating the time it takes to fall 3000 m under gravity, using the formula for vertical motion. The airplane's position when the bomb hits the ground can be found by multiplying its speed by the time calculated. Finally, to set the bomb sight angle, the horizontal distance covered by the bomb and the vertical drop can be used to find the angle using the tangent function.
33639
Messages
12
Reaction score
0
I'm having problems with this question. I don't know how to solve it...I've usually solved questions with some sort of resistance force but this I don't know how to solve.
How would I solve this question?

1. The problem

A bomber flies horizontally with a speed of 275 m/s relative to the ground. The altitude of the bomber is 3000. m and the terrain is level. Neglect the effects of air resistance.
(a) How far from the point vertically under the point of release does a bomb hit the ground?
(b) If the plane maintains its original course and speed, where is it when the bomb hits the ground?
(c) At what angle from the vertical at the point of release must the telescopic bomb sight be set so that the bomb hits the target seen in t he sight at the time of release?
 
Physics news on Phys.org
Think: at the instant when the bomb is released it has the same horizontal velocity as the bomber. So you have a falling body with horizontal initial velocity: it is a projectile. You know the laws of projectile motion?

ehild
 
ehild said:
Think: at the instant when the bomb is released it has the same horizontal velocity as the bomber. So you have a falling body with horizontal initial velocity: it is a projectile. You know the laws of projectile motion?

ehild

I'm just confused with how can I find the speed of the bullet as it's traveling down.
I know in the x component v = 275 and in the y component d = 3000 and a = -9.8
 
This is very strange. Problems with "some sort of resistance force" are usually much harder that problems like this.

"A bomber flies horizontally with a speed of 275 m/s relative to the ground. The altitude of the bomber is 3000. m"
There is NO horizontal force on the bullet and so no horizontal acceleration. The horizontal component of speed is always 275 m/s and the horizontal distance the bullet moves in t seconds is 275t meters.

There is, vertically, the force of gravity so there is a vertical acceleration of -9.8 m/s^2. The vertical speed, after t seconds, is -9.8t (there is no initial vertical speed). So what will be the height of the bullet after t seconds? What is t when the bomb hits the ground (height= 0)?

"a) How far from the point vertically under the point of release does a bomb hit the ground?"
Is that really what the problem says?? The airplane was at 3000m so the ground is 3000m below the point of release! I suspect the problem really says "horizontally", not "vertically". Find the time until the height of the bomb is 0, and put that into the horiontal distance formula to find the horizontal distance from the point of release to the point of the bomb.

"(b) If the plane maintains its original course and speed, where is it when the bomb hits the ground?"
You are told that the plane is flying at 275 m/s so the distance it flies in t seconds is 275t meters. Use the time until the bomb hits the ground to find where the plane is. You should not be surprized at the answer.

"(c) At what angle from the vertical at the point of release must the telescopic bomb sight be set so that the bomb hits the target seen in t he sight at the time of release?"
You have found the horizontal distance the bomb moved and know the vertical distance is 5000 m. tan(\theta)= horizontal/vertical
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top