How Do You Calculate Width in a Changing Rectangle with Constant Area?

NewsboysGurl91
Messages
10
Reaction score
0
1. A rectangle has a constant area of 200 square meters and its length L is increasing at the rate of 4 meters per second. Find the width W at the instant the width is decreasing at the rate of 0.5 meters per second.



2. Know: dL/dt= 4 m/s, dW/dt=.5 m/s Want: W



3. LW=A. Then DL/dt * DW/dt = 200 m^2. How do you get W from this?

I have some other questions too. Related rates are hard.
 
Physics news on Phys.org
NewsboysGurl91 said:
1. A rectangle has a constant area of 200 square meters and its length L is increasing at the rate of 4 meters per second. Find the width W at the instant the width is decreasing at the rate of 0.5 meters per second.



2. Know: dL/dt= 4 m/s, dW/dt=.5 m/s Want: W



3. LW=A. Then DL/dt * DW/dt = 200 m^2. How do you get W from this?

I have some other questions too. Related rates are hard.
dL/dt*dw/dt= 200 can't possibly be correct, can it? 4*0.5 is not 200! Recheck your differentiation- particularly the "product rule"! Also, it is the area that is the constant 200, not the rate of change. What is the derivative of a constant?
 
Never mind, I totally forgot about the product rule.
 
Okay, I got stuck again.
DL/dt*W+ L*DW/dt = 0.
4*W + L* -.5 = 0. How do you find L? Once you find L, isn't it obvious what W will be? Then you wouldn't have to go through this whole rate problem.
 
use the two equations

solve the original area equation and differential equation simultaneously

That is,

A = wl
0 = 4w - .5l

solve the above for w.
 
Kay, thanks.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top