How do you find where x+1 and 9-(x^2) intercept?

  • Thread starter Thread starter pillar
  • Start date Start date
pillar
Messages
35
Reaction score
0

Homework Statement



Find at what points these two functions intercept.

y=x+1 y=9-(x^2)

Homework Equations



x+1=9-(x^2)

The Attempt at a Solution



(x^2)-x-8=0
 
Physics news on Phys.org
I assume you mean "intersect". Either complete the square or use the quadratic formula. And check the sign on your x term.
 
LCKurtz said:
I assume you mean "intersect". Either complete the square or use the quadratic formula. And check the sign on your x term.

Yes I meant intersect, thanks for your help.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top