How Do You Interpret Rowen's Notation in Matrix Rings?

Click For Summary
SUMMARY

This discussion focuses on interpreting Rowen's notation in matrix rings, specifically the multiplication rule $$( r_1 e_{ij} ) ( r_2 e_{uv} ) = \delta_{ju} (r_1 r_2) e_{iv}$$ from Louis Rowen's "Ring Theory." Participants clarify that $$r_1$$ and $$r_2$$ are elements of the ring $$R$$, serving as coefficients in the matrix representation using the basis $$e_{ij}$$. The multiplication rule is explained through the example of matrices in $$M_2(\mathbb{Z})$$, illustrating how to apply the distributive property to compute products of matrices.

PREREQUISITES
  • Understanding of matrix algebra, specifically matrix multiplication.
  • Familiarity with the concepts of idempotents and matrix units in ring theory.
  • Basic knowledge of the notation and terminology used in abstract algebra.
  • Experience with the structure of matrix rings, particularly $$M_n(R)$$.
NEXT STEPS
  • Study the properties of matrix units in ring theory, focusing on their role in matrix rings.
  • Explore the concept of idempotents in algebraic structures and their applications.
  • Learn about the distributive property in the context of matrix multiplication.
  • Investigate examples of matrix multiplication in different rings, such as $$M_n(\mathbb{Z})$$ and $$M_n(\mathbb{R})$$.
USEFUL FOR

This discussion is beneficial for students and researchers in abstract algebra, particularly those studying ring theory and matrix algebra. It is especially useful for anyone seeking to deepen their understanding of Rowen's notation and its applications in matrix rings.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Louis Rowen's book, "Ring Theory"(Student Edition) ...

I have a problem interpreting Rowen's notation in Section 1.1 Matrix Rings and Idempotents ...

The relevant section of Rowen's text reads as follows:View attachment 6069
View attachment 6070In the above text from Rowen, we read the following:
" ... ... We obtain a more explicit notation by defining the $$n \times n$$ matric unit $$e_{ij}$$ to be the matrix whose $$i-j$$ entry is $$1$$, with all other entries $$0$$.Thus $$( r_{ij} ) = \sum_{i,j =1}^n r_{ij} e_{ij}$$ ; addition is componentwise and multiplication is given according to the rule $$( r_1 e_{ij} ) ( r_2 e_{uv} ) = \delta_{ju} (r_1 r_2) e_{iv} $$

... ... ...
I am having trouble understanding the rule $$( r_1 e_{ij} ) ( r_2 e_{uv} ) = \delta_{ju} (r_1 r_2) e_{iv}$$ ... ...

What are $$r_1$$ and $$r_2$$ ... where exactly do they come from ... ?

Can someone please explain the rule to me ...?To take a specific example ... suppose we are dealing with $$M_2 ( \mathbb{Z} )$$ and we have two matrices ...$$P = \begin{pmatrix} 1 & 3 \\ 5 & 4 \end{pmatrix}$$

and

$$Q = \begin{pmatrix} 2 & 1 \\ 3 & 3 \end{pmatrix}$$ ...In this specific case, what are $$r_1$$ and $$r_2$$ ... ... and how would the rule in question work ...?
Hope someone can help ...

Peter
 
Physics news on Phys.org
Peter said:
I am having trouble understanding the rule $$( r_1 e_{ij} ) ( r_2 e_{uv} ) = \delta_{ju} (r_1 r_2) e_{iv}$$ ... ...

What are $$r_1$$ and $$r_2$$ ... where exactly do they come from ... ?
$r_1$ and $r_2$ are numbers, or, more precisely, elements of the ring $R$. They are also coefficients, or coordinates, of a matrix in the basis consisting of $e_{ij}$. If one matrix is $\displaystyle\sum_{i,j=1}^nr^{(1)}_{ij}e_{ij}$ and another is $\displaystyle\sum_{i,j=1}^nr^{(2)}_{ij}e_{ij}$, then when you multiply them, you apply distributivity and get $\displaystyle\sum_{i,j,u,v=1}^nr^{(1)}_{ij}e_{ij}r^{(2)}_{uv}e_{uv}$, and the formula in your quote says how to compute $r^{(1)}_{ij}e_{ij}r^{(2)}_{uv}e_{uv}$.
 
Evgeny.Makarov said:
$r_1$ and $r_2$ are numbers, or, more precisely, elements of the ring $R$. They are also coefficients, or coordinates, of a matrix in the basis consisting of $e_{ij}$. If one matrix is $\displaystyle\sum_{i,j=1}^nr^{(1)}_{ij}e_{ij}$ and another is $\displaystyle\sum_{i,j=1}^nr^{(2)}_{ij}e_{ij}$, then when you multiply them, you apply distributivity and get $\displaystyle\sum_{i,j,u,v=1}^nr^{(1)}_{ij}e_{ij}r^{(2)}_{uv}e_{uv}$, and the formula in your quote says how to compute $r^{(1)}_{ij}e_{ij}r^{(2)}_{uv}e_{uv}$.
Thanks Evgeny ... your post was very clear ... and most helpfu ...

Peter
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
8
Views
2K