How Do You Isolate x in the Equation A = bx / (1-(1+x)^{-c})?

  • Thread starter Thread starter Toby_Obie
  • Start date Start date
Toby_Obie
Messages
18
Reaction score
0
Hello

I originally posted this on the pre-calculus board, but no answer

Im trying to rearrange to find x from the below (all other values, A, b and c known)

A = bx / 1-(1+x)^{-c}

I've rearranged but to no avail, I'm unsure how to isolate x

How would I go about this ?

Thanks, much appreciated
 
Physics news on Phys.org
Is it A=(b*x)/(1-(1+x)-c) ?
 
Correct
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top