How Do You Prove the Relationships Between T_n, M_n, and S_{2n}?

AI Thread Summary
The discussion focuses on proving the relationships between the Trapezoidal rule (T_n), Midpoint rule (M_n), and Simpson's rule (S_{2n}). The user successfully derives the equations \(\frac{1}{2}(T_n + M_n) = T_{2n}\) and \(\frac{1}{3}T_n + \frac{2}{3}M_n = S_{2n}\) using expressions for each rule in terms of function evaluations at specific points. The key challenge was integrating the evaluation points from the different methods, which was resolved by expressing them in terms of the lower limit and step size. Ultimately, the user confirms the relationships by showing the equivalence of the sums derived from each rule. The thread concludes with a successful verification of both relationships.
DivGradCurl
Messages
364
Reaction score
0
I have two similar problems. I need to show that

1. \frac{1}{2} \left( T_n + M_n \right) = T_{2n}

2. \frac{1}{3} T_n + \frac{2}{3} M_n = S_{2n}

where:

T is the Trapezoidal rule.

M is the Midpoint rule.

S is Simpson's rule.

This is what I've got:

T_n = \frac{b-a}{2n}\left[ f\left( x_0 \right) + 2f\left( x_1 \right) + 2f\left( x_2 \right) + \dots + 2f\left( x_{n-2} \right) + 2f\left( x_{n-1} \right) + f\left( x_{n} \right) \right]

T_{2n} = \frac{b-a}{4n}\left[ f\left( x_0 \right) + 2f\left( x_2 \right) + 2f\left( x_4 \right) + \dots + 2f\left( x_{2n-2} \right) + 2f\left( x_{2n-1} \right) + f\left( x_{2n} \right) \right]

M_n = \frac{b-a}{n}\left[ f\left( \bar{x}_1 \right) + f\left( \bar{x}_2 \right) + f\left( \bar{x}_3 \right) + \dots + f\left( \bar{x}_{n} \right) \right]

S_n = \frac{b-a}{3n}\left[ f\left( x_0 \right) + 4f\left( x_1 \right) + 2f\left( x_2 \right) + 4f\left( x_3 \right) + \dots + 4f\left( x_{n-3} \right) + 2f\left( x_{n-2} \right) + 4f\left( x_{n-1} \right) + f\left( x_{n} \right) \right]

S_{2n} = \frac{b-a}{6n}\left[ f\left( x_0 \right) + 4f\left( x_2 \right) + 2f\left( x_4 \right) + 4f\left( x_6 \right) + \dots + 4f\left( x_{2n-3} \right) + 2f\left( x_{2n-2} \right) + 4f\left( x_{2n-1} \right) + f\left( x_{2n} \right) \right]

The main difficulty I've had is to deal with the f\left( \bar{x}_{n} \right) terms, since I can't see a way to combine them with the f\left( x_{n} \right) ones.

Any help is highly appreciated.
 
Physics news on Phys.org
Express your points x_0, x_1, ..., x_n in terms of the lower limit and the step. So the step is:

h= \frac {b -a} n

x_0 = a
x_1 = a + h
.
.
.
x_n = a + nh

Can you do the same for the \bar {x}_n

You may want to use different symbols for the evaluation points of the different methods. This will help you to deal with the fact that x_n is not the same point for the different methods. Once you have worked out the actual values, in terms af a and h you should be home free.
 
Thank you for the tips!

I think I've found the solution to both problems. Here's what I have:

T_n = \frac{h}{2}\left\{ f(a) + 2f(a+h) + 2f(a+2h) + \dots + 2f\left[ a + (n-2)h \right] + 2f\left[ a + (n-1)h \right] + f\left( a + nh \right) \right\}

T_{2n} = \frac{h}{4}\left\{ f(a) + 2 f\left( a + \frac{h}{2} \right) + 2 f\left( a + h \right) + 2 f\left( a + \frac{3h}{2} \right) + \dots + 2 f\left[ a + \frac{(2n-1)h}{2} \right] + f\left( a + nh \right) \right\}

M_n = h \left\{ f\left( a + \frac{h}{2} \right) + f\left( a + \frac{3h}{2} \right) + f\left( a + \frac{5h}{2} \right) + \dots + f\left[ a + \frac{(2n-3)h}{2} \right] + f\left[ a + \frac{(2n-2)h}{2} \right] + f\left[ a + \frac{(2n-1)h}{2} \right] \right\}

S_n = \frac{h}{3}\left\{ f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + \dots + 4 f\left[ a+(n-3)h \right] + 2 f\left[ a+(n-2)h \right] + 4 f\left[ a+(n-1)h \right] + f(a+nh) \right\}

S_{2n} = \frac{h}{6} \left\{ f(a) + 4 f\left( a + \frac{h}{2} \right) + 2f(a+h) + 4 f\left( a + \frac{3h}{2} \right) + \dots + 2 f\left[ a+\frac{(2n-2)h}{2} \right] + 4 f\left[ a+\frac{(2n-1)h}{2} \right] + f(a+nh) \right\}

To make things a bit simpler, I write them in shorthand notation:

T_n = \frac{h}{2}\alpha

T_{2n} = \frac{h}{4}\beta

M_n = h \gamma

S_n = \frac{h}{3}\theta

S_{2n} = \frac{h}{6}\lambda

So, we have:

1. \frac{1}{2}\left( T_n + M_n \right) = T_{2n}

\frac{1}{2} \left( \frac{h}{2} \alpha + h \gamma \right) = \frac{h}{4}\beta

\frac{h}{2} \left( \frac{1}{2} \alpha + \gamma \right) = \frac{h}{4}\beta

\frac{1}{2}\alpha + \gamma = \frac{1}{2}\beta

Thus, we find

\frac{1}{2} f(a) + f(a+h) + f(a+2h) + \dots + f\left[ a + (n-2)h \right] + f\left[ a + (n-1)h \right] + \frac{1}{2} f\left( a + nh \right)​

+​

f\left( a + \frac{h}{2} \right) + f\left( a + \frac{3h}{2} \right) + f\left( a + \frac{5h}{2} \right) + \dots + f\left[ a + \frac{(2n-1)h}{2} \right]​


=​

\frac{1}{2} f(a) + f\left( a + \frac{h}{2} \right) + f(a+h) + f\left( a + \frac{3h}{2} \right) + \dots + f\left[ a + \frac{(2n-1)h}{2} \right] + \frac{1}{2} f\left( a + nh \right)​

which verifies the first relationship.

2. \frac{1}{3}T_n + \frac{2}{3}M_n = S_{2n}

\frac{1}{3}\left( \frac{h}{2}\alpha \right) + \frac{2}{3}(h\gamma ) = \frac{h}{6}\lambda

\frac{h}{6}\alpha + \frac{2h}{3}\gamma = \frac{h}{6}\lambda

\frac{h}{6} \left( \alpha + 4\gamma \right) = \frac{h}{6}\lambda

\alpha + 4\gamma = \lambda

Thus, we find

f(a) + 2f(a+h) + 2f(a+2h) + \dots + 2f\left[ a + (n-2)h \right] + 2f\left[ a + (n-1)h \right] + f\left( a + nh \right)​

+​

4f\left( a + \frac{h}{2} \right) + 4f\left( a + \frac{3h}{2} \right) + 4f\left( a + \frac{5h}{2} \right) + \dots + 4f\left[ a + \frac{(2n-3)h}{2} \right] + 4f\left[ a + \frac{(2n-2)h}{2} \right] + 4f\left[ a + \frac{(2n-1)h}{2} \right]​

=​

f(a) + 4 f\left( a + \frac{h}{2} \right) + 2f(a+h) + 4 f\left( a + \frac{3h}{2} \right) + \dots + 2 f\left[ a+\frac{(2n-2)h}{2} \right] + 4 f\left[ a+\frac{(2n-1)h}{2} \right] + f(a+nh)​

which verifies the second relationship.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top